检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江理工大学机械与自动控制学院,杭州310018 [2]浙江工业大学机械工程学院,杭州310014
出 处:《浙江理工大学学报(社会科学版)》2017年第4期293-298,共6页Journal of Zhejiang Sci-Tech University:Social Sciences
摘 要:为提高拣选效率,针对货到人模式的拣选特点,在鱼骨型布局中提出了基于品项相关性和货架相关性的货位优化方法。首先根据品项的相关性和订购频次划分品项簇,建立以最小化拣选路程为目标的货位分配模型,然后设计基于货架相关性的禁忌搜索算法(TS_SC)求解模型。该算法根据订单体积指数方法(COI)生成初始解,应用交换方式将相关性强的货架就近存储,缩短拣选路程。实验结果表明:相较于禁忌搜索算法,该算法收敛速度快,寻优能力强;相较于COI方法,该算法可有效减少货架搬运次数26.3%~39.6%,缩短拣选路程34.2%~48.6%。因此充分利用品项相关性和货架相关性进行货位优化,有利于提高货到人模式下的拣选效率。In order to improve the picking efficiency of the rack-to-picker picking mode,this paper puts forward slotting optimization method based on SKUs correlation and shelf correlation in the fishbone layout.Firstly,the SKU clusters were divided according to the SKUs correlation and the order frequency,and slotting allocation mode with the goal of minimizing picking route was established.Then,tabu search algorithm based on shelf correlation(TS-SC)was designed to solve the mathematical model.The algorithm generates the initial solution according to the COI solution and applies the way of exchange to store the shelves with strong correlation to shorten the picking route.The results show that compared with tabu search algorithm,this algorithm has faster rate of convergence and stronger optimization ability.Compared with COI method,this algorithm can effectively reduce the number of rack movements from26.3% to 39.6% and shorten picking route from 34.2% to 48.6%.So,making the best of SKUs correlation and shelf correlation for slotting optimization contributes to improving picking efficiency under rack-to-picker mode.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88