检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li Cheng Yi Zhang 程丽;张翼(Normal School,Jinhua Polytechnic;Department of Mathematics, Zhejiang Normal University)
机构地区:[1]Normal School, Jinhua Polytechnic, Jinhua 321007, China [2]Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
出 处:《Communications in Theoretical Physics》2017年第7期1-5,共5页理论物理通讯(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant No.11371326
摘 要:The purpose of this paper is to introduce a class of generaJized nonlinear evolution equations, which can be widely applied to describing a variety of phenomena in nonlinear physical science. A KdV-type Wronskian formulation is constructed by employing the Wronskian conditions of the KdV equation. Applications are made for the (3+1)- dimensional generalized KP, BKP and Jimbo-Miwa equations, thereby presenting their Wronskian sufficient conditions. An N-soliton solution in terms of Wronskian determinant is obtained. Under a dimensional reduction, our results yield Wronskian solutions of the KdV equation.
关 键 词:generalized KP BKP and Jimbo-Miwa equations the KdV equation Wronskian formulation dimensional reduction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.115.102