A KdV-Type Wronskian Formulation to Generalized KP, BKP and Jimbo–Miwa Equations  

A KdV-Type Wronskian Formulation to Generalized KP, BKP and Jimbo–Miwa Equations

在线阅读下载全文

作  者:Li Cheng Yi Zhang 程丽;张翼(Normal School,Jinhua Polytechnic;Department of Mathematics, Zhejiang Normal University)

机构地区:[1]Normal School, Jinhua Polytechnic, Jinhua 321007, China [2]Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

出  处:《Communications in Theoretical Physics》2017年第7期1-5,共5页理论物理通讯(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant No.11371326

摘  要:The purpose of this paper is to introduce a class of generaJized nonlinear evolution equations, which can be widely applied to describing a variety of phenomena in nonlinear physical science. A KdV-type Wronskian formulation is constructed by employing the Wronskian conditions of the KdV equation. Applications are made for the (3+1)- dimensional generalized KP, BKP and Jimbo-Miwa equations, thereby presenting their Wronskian sufficient conditions. An N-soliton solution in terms of Wronskian determinant is obtained. Under a dimensional reduction, our results yield Wronskian solutions of the KdV equation.

关 键 词:generalized KP BKP and Jimbo-Miwa equations the KdV equation Wronskian formulation dimensional reduction 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象