机构地区:[1]Department of Mathematics,National Institute of Technology,Agartala 799046,India [2]Fluvial Mechanics Laboratory,Physics and Applied Mathematics Unit,Indian Statistical Institute,Kolkata 700108,India [3]Fluid Mechanics and Hydraulic Laboratory(FMHL),Department of Aernspace Engineering and Applied Mechanics,Indian Institute of Engineering Science and Technology(IIEST),Shibpur,Howrah 711103,India
出 处:《Chinese Journal of Chemical Engineering》2017年第7期862-873,共12页中国化学工程学报(英文版)
摘 要:An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris-Barton's 'method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.
关 键 词:Casson liquid Yield stress Axial-dispersion coefficient Irreversible reaction DIFFUSIVITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...