机构地区:[1]Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao National Laboratory for Marine Science and Technology [2]College of Marine Sciences, Shanghai Ocean University [3]School of Life and Environmental Sciences, Deakin University
出 处:《Chinese Chemical Letters》2017年第7期1406-1412,共7页中国化学快报(英文版)
基 金:financial support from Key R&D of Shandong Province (No. 2016GSF120008);Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02-05)
摘 要:By employing an electrical micro-titration system, in which a capacitively coupled contactless conductivity detector(C^4D) was used to monitor the reaction process in real time, herein a novel method for determining ciprofloxacin hydrochloride(CIPHCl) was developed for the first time. Mode 1: Standard CIPHCl solutions at different concentrations were loaded into reaction cells, respectively, and were titrated with standard Ag^+. Upon the titration, the formation of a precipitate alters the number of ions in the solution, raising the change of conductivity, which was monitored by a special C-4 D to construct a titration curve. The endpoint of the titration was located from the peak of the curve. Between the elapsed time and the initial concentration of titrand, a linear relationship was established over the range of2.0–8.0 mmol/L. Mode 2: Standard Fe^3+ took the place of Ag^+, and was used as titrant to recognize ciprofloxacin contributed to the formation of complexation, which also resulting a change of solution conductivity. Under optimized conditions, a working range of 1.0–5.0 mmol/L CIPHCl was found. Because the reaction solutions were isolated from the working electrodes, this pioneer work shows significant simplicity and cost-effectiveness, by eliminating the requirements for detector exchange/renewal between different measurements, and by involving no auxiliary chemicals. Both of the two approaches were applied successfully to determine CIPHCl in tablet samples. And the results were in good agreement with those obtained by reference method.By employing an electrical micro-titration system, in which a capacitively coupled contactless conductivity detector(C^4D) was used to monitor the reaction process in real time, herein a novel method for determining ciprofloxacin hydrochloride(CIPHCl) was developed for the first time. Mode 1: Standard CIPHCl solutions at different concentrations were loaded into reaction cells, respectively, and were titrated with standard Ag^+. Upon the titration, the formation of a precipitate alters the number of ions in the solution, raising the change of conductivity, which was monitored by a special C-4 D to construct a titration curve. The endpoint of the titration was located from the peak of the curve. Between the elapsed time and the initial concentration of titrand, a linear relationship was established over the range of2.0–8.0 mmol/L. Mode 2: Standard Fe^3+ took the place of Ag^+, and was used as titrant to recognize ciprofloxacin contributed to the formation of complexation, which also resulting a change of solution conductivity. Under optimized conditions, a working range of 1.0–5.0 mmol/L CIPHCl was found. Because the reaction solutions were isolated from the working electrodes, this pioneer work shows significant simplicity and cost-effectiveness, by eliminating the requirements for detector exchange/renewal between different measurements, and by involving no auxiliary chemicals. Both of the two approaches were applied successfully to determine CIPHCl in tablet samples. And the results were in good agreement with those obtained by reference method.
关 键 词:Ciprofloxacin hydrochloride Determination Micro-titration Capacitively coupled contactless conductivity detector Pharmaceutical analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...