Stealth-ACK:stealth transmissions of NoC acknowledgements  

Stealth-ACK: stealth transmissions of No C acknowledgements

在线阅读下载全文

作  者:Jinhua TAO Shi QIU Shaoli LIU Tianshi CHEN Rui MAO 

机构地区:[1]College of Computer Science and Software Engineering,Shenzhen University,Shenzhen 518060,China [2]Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Science China(Information Sciences)》2017年第9期17-31,共15页中国科学(信息科学)(英文版)

摘  要:Network-on-Chip (NoC) is a promising replacement of bus architecture due to its better scalability. In state-of-the-art NoCs, each packet contains several fixed-length flits, which facilitates allocations of network resources but brings in many unused bits. In this paper, we propose a novel technique called Stealth-ACK to effectively address the above problem. Stealth-ACK leverages unused bits in head flits of non-ACK packets to carry and stealthily transmit ACK information. Such stealth transmissions of ACK information effectively reduce not only the amount of dedicated ACK packets on NoC, but also the number of unused bits in head flits of non-ACK packets, which significantly reduces wastes on NoC bandwidth. Experimental results show that Stealth-ACK averagely increases the throughput of 16 × 16 2-D mesh NoC by 11.9%, and averagely reduces the NoC latency by 34.8% on application traces of SPLASH-2. Moreover, Stealth-ACK only requires trivial hardware modification to basic router architectures, which incurs negligible power consumption and area cost.Network-on-Chip (NoC) is a promising replacement of bus architecture due to its better scalability. In state-of-the-art NoCs, each packet contains several fixed-length flits, which facilitates allocations of network resources but brings in many unused bits. In this paper, we propose a novel technique called Stealth-ACK to effectively address the above problem. Stealth-ACK leverages unused bits in head flits of non-ACK packets to carry and stealthily transmit ACK information. Such stealth transmissions of ACK information effectively reduce not only the amount of dedicated ACK packets on NoC, but also the number of unused bits in head flits of non-ACK packets, which significantly reduces wastes on NoC bandwidth. Experimental results show that Stealth-ACK averagely increases the throughput of 16 × 16 2-D mesh NoC by 11.9%, and averagely reduces the NoC latency by 34.8% on application traces of SPLASH-2. Moreover, Stealth-ACK only requires trivial hardware modification to basic router architectures, which incurs negligible power consumption and area cost.

关 键 词:NETWORKS-ON-CHIP acknowledgement packet router architecture optimisation routing algorithm 

分 类 号:TN47[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象