检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于永军[1] 韩华玲[2] 张磊[2] 刘大贵[1] 祁晓笑[1] 孙谊媊[1]
机构地区:[1]国网新疆电力公司电力科学研究院,新疆乌鲁木齐830011 [2]中国电力科学研究院,江苏南京210003
出 处:《可再生能源》2017年第8期1188-1194,共7页Renewable Energy Resources
基 金:国家重点研发计划项目(2016YFB0900105)
摘 要:光伏发电的出力和负荷的不确定性给电力系统经济调度提出了新要求。针对光伏出力和负荷难以准确预测的特性,基于可信性理论引入模糊变量,并将光伏出力和负荷用模糊参数表示;用模糊约束取代传统确定性约束,建立含梯形模糊变量的功率平衡和正负旋转备用容量的模糊机会约束模型。采用清晰等价类的方法将模糊约束转换为确定性约束,提出用简化的粒子群优化算法求解模型。算例分析验证了所提模型和算法的有效性。Photovoltaic power generation has significant benefits of energy saving and emission reduction. It's difficult and uncertain to predict PV output and load accurately. The PV output is mainly influenced by the factors such as light, temperature and so on. These uncertainties have raised new requirements for economic power dispatching environment. According to the characteristics that it is difficult to predict photovoltaic power and load, fuzzy variables were introduced based on credibility theory and PV output and load were represented by fuzzy parameters; used fuzzy constraints to replace the traditional deterministic constraints and established fuzzy chance constrained models, containing power balance and positive and negative rotation reserve capacity which all considering trapezoidal fuzzy variable. The fuzzy constraints were transformed into deterministic constraints by using the method of equivalent conversion. In addition, a simplified particle swarm optimization algorithm is proposed to solve the optimal model. The effectiveness of the proposed model and algorithm is verified by case study.
关 键 词:光伏发电 经济调度 模糊机会约束 旋转备用容量 简化粒子群算法
分 类 号:TK81[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56