风电轴承多源振动信号故障诊断的数据融合方法研究  被引量:1

The Fault Diagnosis Method of Data fusion for the Multi-Source Vibration Signal of Wind Power Bearing

在线阅读下载全文

作  者:袁倩[1] 孙冬梅[1] 朱徐东 

机构地区:[1]南京工业大学电气工程与控制科学学院,南京211816

出  处:《电子器件》2017年第3期568-572,共5页Chinese Journal of Electron Devices

基  金:国家自然科学基金项目(51277092);江苏省人事厅江苏省博士后计划项目(1201012C)

摘  要:针对风电回转支承的故障振动信号为低频信号,不平稳、非线性,难以检出等难题,提出了基于数据融合的方案:首先提出了B型关联度加权法和小波去噪相结合的方法,对多源振动信号进行融合去噪,然后以EEMD为基础对融合后的信号进行分解,此方案不仅提高了融合信号的信噪比,而且抑制了在经验模态分解中的模式混叠现象,实验结果表明与理论计算的故障特征频率相吻合,充分显示了其应用在回转支承故障诊断系统中的可行性。Aiming at the disadvantage of wind rotary bearing fault vibration signal,such as low frequency,not smooth,nonlinear,difficult to detect,it puts forward a project based on data fusion.First of all,the combination of methods correlation B weighting method and the wavelet de-noising is proposed,multi-source vibration signals are fused and de-noising and then are decomposed on the basis of the EEMD.The experimental results show that the project tallies with the theoretical calculation of the fault characteristic frequency,it fully shows the effectiveness of the system on the fault diagnosis of magnetic rotor.

关 键 词:风电轴承 数据融合 B型关联度 EEMD 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象