检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昕[1]
出 处:《计算机仿真》2017年第8期306-309,共4页Computer Simulation
摘 要:对移动自组织网络节点数据故障的诊断,能够更好地提升移动自组织网络质量。对节点数据故障的诊断,需要获取故障节点的先验概率,得到故障案例的属性匹配权值,完成故障的诊断。传统方法先将移动自组网络划分为若干簇,得到各个节点状态的更新消息,但忽略了得到故障案例的属性匹配权值,导致故障诊断精度偏低。提出基于多属性加权模糊贝叶斯的移动自组织网络中节点数据故障诊断方法。以叶贝斯理论为基础引入多个节点属性值,将节点的信号收发稳定性和节点运作正常度定义为网络节点故障验证属性,给出节点损耗特征的加权模糊函数,计算出各个节点发生故障的概率,获取故障节点发生在故障区域的先验概率,得到故障案例的属性匹配权值,并完成对移动自组织网络中节点数据故障诊断。实验结果表明,所提方法故障诊断精度高,大幅度提升了移动自组织网络质量。This research focuses on fault diagnosis method of node data in mobile self - organizing network based on fuzzy Bayes with multi - attribute weighting. Several node attribute values were introduced based on Bayes theory, and stability of signal transceiver of node and degree of normal operation were defined as verification attribute of node fault. Then weighting fuzzy function of feature of node loss was provided. The probability of node fault was worked out and prior probability of fault node happening in faulty region was acquired. In addition, the research obtained attribute matching weight of fault case. Experimental results show that the method has high diagnosis precision. It improves quality of mobile self - organizing network by a large margin.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15