Collective motion of active particles in environmental noise  

Collective motion of active particles in environmental noise

在线阅读下载全文

作  者:陈秋实 季铭 

机构地区:[1]National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

出  处:《Chinese Physics B》2017年第9期565-570,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.91427302,91027040,and 11474155);the National Basic Research Program of China(Grant No.2012CB821500)

摘  要:We study the collective motion of active particles in environmental noise, where the environmental noise is caused by noise particles randomly diffusing in two-dimensional space. We show that active particles in a noisy environment can self organize into three typical phases: polar liquid, band, and disordered gas states. In our model, the transition between band and disordered gas states is discontinuous. Giant number fluctuation is observed in the polar liquid phase. We also compare our results with the Vicsek model and show that the interaction with noise particles can stabilize the band state to very low noise condition. This band structure could recruit most of the active particles in the system, which greatly enhances the coherence of the system. Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors, which may further contribute to improving the design of collective migration and navigation strategies.We study the collective motion of active particles in environmental noise, where the environmental noise is caused by noise particles randomly diffusing in two-dimensional space. We show that active particles in a noisy environment can self organize into three typical phases: polar liquid, band, and disordered gas states. In our model, the transition between band and disordered gas states is discontinuous. Giant number fluctuation is observed in the polar liquid phase. We also compare our results with the Vicsek model and show that the interaction with noise particles can stabilize the band state to very low noise condition. This band structure could recruit most of the active particles in the system, which greatly enhances the coherence of the system. Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors, which may further contribute to improving the design of collective migration and navigation strategies.

关 键 词:active matter soft matter self-organization 

分 类 号:O347.7[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象