机构地区:[1]Computational Geomechanics Research Group, Department of Engineering, University of Cambridge [2]IATE, UMR 1208 INRA-CIRAD-Montpellier Supagro-UM2, University of Montpellier 2 [3]Department of Civil and Environmental Engineering, University of California
出 处:《Journal of Hydrodynamics》2017年第4期529-541,共13页水动力学研究与进展B辑(英文版)
基 金:the Cambridge Commonwealth, Overseas Trust and the ShellCambridge-Brazil collaboration for the financial support to pursue this research
摘 要:This paper investigates the effect of initial volume fraction on the runout characteristics of collapse of granular columns on slopes in fluid. 2-D sub-grain scale numerical simulations are performed to understand the flow dynamics of granular collapse in fluid. The discrete element method(DEM) technique is coupled with the lattice Boltzmann method(LBM), for fluid-grain interactions, to understand the evolution of submerged granular flows. The fluid phase is simulated using multiple-relaxation-time LBM(LBM-MRT) for numerical stability. In order to simulate interconnected pore space in 2-D, a reduction in the radius of the grains(hydrodynamic radius) is assumed during LBM computations. The collapse of granular column in fluid is compared with the dry cases to understand the effect of fluid on the runout behaviour. A parametric analysis is performed to assess the influence of the granular characteristics(initial packing) on the evolution of flow and run-out distances for slope angles of 0 °, 2.5°, 5 ° and 7.5 °. The granular flow dynamics is investigated by analysing the effect of hydroplaning, water entrainment and viscous drag on the granular mass. The mechanism of energy dissipation, shape of the flow front, water entrainment and evolution of packing density is used to explain the difference in the flow characteristics of loose and dense granular column collapse in fluid.This paper investigates the effect of initial volume fraction on the runout characteristics of collapse of granular columns on slopes in fluid. 2-D sub-grain scale numerical simulations are performed to understand the flow dynamics of granular collapse in fluid. The discrete element method(DEM) technique is coupled with the lattice Boltzmann method(LBM), for fluid-grain interactions, to understand the evolution of submerged granular flows. The fluid phase is simulated using multiple-relaxation-time LBM(LBM-MRT) for numerical stability. In order to simulate interconnected pore space in 2-D, a reduction in the radius of the grains(hydrodynamic radius) is assumed during LBM computations. The collapse of granular column in fluid is compared with the dry cases to understand the effect of fluid on the runout behaviour. A parametric analysis is performed to assess the influence of the granular characteristics(initial packing) on the evolution of flow and run-out distances for slope angles of 0 °, 2.5°, 5 ° and 7.5 °. The granular flow dynamics is investigated by analysing the effect of hydroplaning, water entrainment and viscous drag on the granular mass. The mechanism of energy dissipation, shape of the flow front, water entrainment and evolution of packing density is used to explain the difference in the flow characteristics of loose and dense granular column collapse in fluid.
关 键 词:Lattice Boltzmann method(LBM) discrete element method(DEM) granular column collapse granular flows hydroplaning water entrainment viscous drag
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...