一种云桌面虚拟化访问控制架构方法  被引量:8

Research on cloud desktop virtualization access control architecture

在线阅读下载全文

作  者:朱亚东[1] 

机构地区:[1]江苏联合职业技术学院信息中心,江苏南京211135

出  处:《西安工程大学学报》2017年第4期563-568,共6页Journal of Xi’an Polytechnic University

基  金:江苏省教育科学"十二五"规划项目(B-b/2015/03/067);江苏省教育厅联合学院一般项目(B-2016-090-010)

摘  要:传统的云桌面虚拟化访问控制方法采用链路分散控制模型,当受到网络扰动时,云桌面虚拟化访问控制性能不好,为此,本文提出一种基于自适应链路均衡控制的云桌面虚拟化访问控制架构方法.通过构建云桌面虚拟化访问控制模型的总体结构模型,采用线性规划博弈模型进行云资源调度,并对云资源的调度算法进行改进设计.通过自适应链路均衡控制,将云桌面的虚拟化资源访问控制问题转化为云服务的优化调度问题;通过整个云桌面单位资源的映射表构,建结合时隙自适应分配,依据弹性分配策略实现最大化任务量执行,降低执行开销和响应时间,实现云桌面虚拟化访问控制架构模型改进设计.仿真结果表明,改进的方法在进行云桌面虚拟化访问控制时,对云资源调度和分配的任务执行响应时间最小,访问控制的自适应均衡性能较好.The traditional cloud desktop virtualization control method uses link distributed control model.When it is disturbanced by network,cloud desktop virtualization access control performance is not good.A cloud desktop virtualization access control architecture model based on adaptive link balance control is proposed. By building the overall structure model of a cloud desktop virtualization access control model, cloud resource scheduling is made based on linear programming game model, and cloud resource scheduling algorithm is designed. Through the link adaptive equalization control, cloud desktop virtualization resource access control problem is formulated for the optimal scheduling problem of cloud services. Through the cloud desktop unit resource mapping table construction, combined with the adaptive time slot allocation,and according to the elastic allocation strategy, maximum task execution is achieved, the execution overhead and response time reduced,and thus the improved cloud desktop virtualization access control architecture model designed. Simulation results show that the proposed method minimi zes the response time and facilitates a better adaptive equalization of access control.

关 键 词:云桌面 虚拟化访问 自适应均衡 云资源调度 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象