基于改进自生成神经网络的肺部CT序列图像分割  被引量:5

Segmentation of Lung CT Image Sequences Based on Improved Self-generating Neural Networks

在线阅读下载全文

作  者:廖晓磊[1] 赵涓涓[1] LIAO Xiao-lei ZHAO Juan-juan(College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong 030600, Chin)

机构地区:[1]太原理工大学计算机科学与技术学院,晋中030600

出  处:《计算机科学》2017年第8期296-300,317,共6页Computer Science

基  金:国家自然科学基金项目(61540007;61373100);国家重点实验室开放基金资助项目(BUAA-VR-15KF02;BUAA-VR-16KF13)资助

摘  要:针对肺实质序列图像分割方法的时效性低和分割不完全性等问题,利用先验知识得到肺部CT序列ROI图像,提出超像素序列分割算法对ROI序列图像进行分割,采用改进的自生成神经网络对超像素进行聚类并优化,根据聚类后样本的灰度和位置特征识别肺实质区域。在序列肺实质图像的分割结果中,单张CT图像的平均处理时间为0.61s,同时能达到92.09±1.52%的平均肺部体素重合度。与已有的方法相比,所提算法能在相对较短的时间内获得较高的分割精准度。Existing lung segmentation methods cannot fully segment all lung parenchyma images and have slow processing speed.The position of the lung was used to obtain lung ROI sequences,and an algorithm of superpixel sequences segmentation was then proposed to segment the ROI image sequences.In addition,improved self-generating neural networks were utilized for superpixel clustering and the grey and geometric features were extracted to identify and segment lung image sequences.The experimental results show that our method's average processing time is 0.61 second for a single slice and it can achieve average volume pixel overlap ratio of 92.09±1.52%.Compared with the existing methods,our method has higher segmentation precision and accuracy with less time.

关 键 词:序列肺分割 ROI序列 超像素 SGNN 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象