Sparse fast Clifford Fourier transform  

Sparse fast Clifford Fourier transform

在线阅读下载全文

作  者:Rui WANG Yi-xuan ZHOU Yan-liang JIN Wen-ming CAO 

机构地区:[1]School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China [2]College of Information Engineering, Shenzhen University, Shenzhen 518060, China [3]Department of Electrical and Computer Engineering, University of Missouri, Columbia 65211, USA

出  处:《Frontiers of Information Technology & Electronic Engineering》2017年第8期1131-1141,共11页信息与电子工程前沿(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Nos. 61301027, 61375015, and 11274226)

摘  要:The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im- plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.Clifford傅里叶变换(Clifford Fourier transform,CFT)可以应用于矢量场和标量场,但无法有效解决大数据问题,因为该算法是基于每个信号量计算的。稀疏快速傅里叶变换(sparse fast Fourier transform,s FFT)理论通过选择性地使用输入数据来处理大数据问题。受之启发,我们提出一个称为稀疏快速Clifford傅里叶变换(sparse fast CFT,SFCFT)的算法,该算法能够大幅度提高在标量场和矢量场中的计算性能。实验对标量场、灰度图和彩色图像数据进行处理,通过与FFT,CFT和s FFT进行比较,表明SFCFT可以有效提升多矢量信号处理的性能。

关 键 词:Sparse fast Fourier transform (sFFT) Clifford Fourier transform (CFT) Sparse fast Clifford Fourier transform(SFCFT) Clifford algebra 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象