基于局部最大熵换道规则的电动自行车流元胞自动机仿真模型  被引量:4

Cellular automata model based on local maximum entropy lane-changing rules for electric bicycle flow

在线阅读下载全文

作  者:魏丽英[1] 崔裕枫 魏家蓉 

机构地区:[1]北京交通大学交通运输学院,北京100044

出  处:《吉林大学学报(工学版)》2017年第5期1436-1445,共10页Journal of Jilin University:Engineering and Technology Edition

基  金:"973"国家重点基础研究发展计划项目(2012CB725403);国家自然科学基金项目(71101008;61473028)

摘  要:根据局部最大熵原理改进换道规则,引入熵增换道概率,并在换道时采用串行更新的方式,反映了电动自行车流的特点;引入换道波的概念,分析了换道波的形成和传播机理,用以说明换道率与车道数、熵增换道概率之间的关系;同时分析了确定性以及随机性条件下,不同的参数设置对流量密度基本图的影响,得出了在流量适宜时,车道宽度设置4条,更容易使得亚稳态区域的流量处于高分支,提高道路利用效率;最后根据观测的数据校验慢化概率,并将本文模型与多值模型、动态地场模型以及观测数据对比,发现本文模型在克服现有模型缺陷的同时还具有较高的精度。The principle of local maximum entropy is used to improve the lane-changing rule.Meanwhile,lane-changing with entropy-increasing probability is introduced,and the serial update method is used during the lane-changing.It reflects the electric bicycle flow characteristics very well.Then,the concept of lane-changing wave is introduced,and the formation mechanism and propagation of the lane-changing wave are analyzed,which is used to explain the relationships of lane-changing rate with the number of lanes and between the lane-changing with entropy-increasing probability.Furthermore,the influence on the fundamental diagram is analyzed under different parameter set in deterministic and stochastic cases.If the flow is appropriate,four lanes for electric bicycle lanes can more easily make the flow of metastable state appear in the high branches,and improve the usingefficiency of the road.Finally,field observations were carried out to calibrate the slowdown probabilities.The model is compared with multi-value model,dynamic floor model and field observation data.The results suggest that the proposed model not only overcomes the defect of the existing models,but also has higher accuracy.

关 键 词:交通运输系统工程 元胞自动机 局部最大熵 换道波 电动自行车流 

分 类 号:U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象