Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production  被引量:7

Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins(RED) production

在线阅读下载全文

作  者:Panpan Liu Hong Zhu Guosong Zheng Weihong Jiang Yinhua Lu 

机构地区:[1]Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2]University of Chinese Academy of Sciences, Beijing 100039, China [3]jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing 210009, China [4]College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China

出  处:《Science China(Life Sciences)》2017年第9期948-957,共10页中国科学(生命科学英文版)

基  金:supported by the National Natural Science Foundation of China(31430004,31421061,31630003,31370081 and 31570072);the Science and Technology Commission of Shanghai Municipality(16490712100)

摘  要:Bacterial prodigiosins are red-colored secondary metabolites with multiple activities,such as anticancer,antimalarial and immunosuppressive,which hold great potential for medical applications.In this study,dramatically enhanced prodigiosins(RED) production in Streptomyces coelicolor was achieved by combinatorial metabolic engineering,including inactivation of the repressor gene ohkA,deletion of the actinorhodin(ACT) and calcium-dependent antibiotic(CDA) biosynthetic gene clusters(BGCs) and multi-copy chromosomal integration of the RED BGC.The results showed that ohkA deletion led to a 1-fold increase of RED production over the wild-type strain M145.Then,the ACT and CDA BGCs were deleted successively based on the AohkA mutant(SBJ101).To achieve multi-copy RED BGC integration,artificial ΦC31 attB site(s) were inserted simultaneously at the position where the ACT and CDA BGCs were deleted.The resulting strains SBJ102(with a single deletion of the ACT BGC and insertion of one artificial attB site) and SBJ103(with the deletion of both BGCs and insertion of two artificial attB sites) produced 1.9-and 6-fold higher RED titers than M145,respectively.Finally,the entire RED BGC was introduced into mutants from SBJ101 to SBJ103,generating three mutants(from SBJ104 to SBJ106) with chromosomal integration of one to three copies of the RED BGC.The highest RED yield was from SBJ106,which produced a maximum level of 96.8 mg g^(-1) cell dry weight,showing a 12-fold increase relative to M145.Collectively,the metabolic engineering strategies employed in this study are very efficient for the construction of high prodigiosin-producing strains.Bacterial prodigiosins are red-colored secondary metabolites with multiple activities,such as anticancer,antimalarial and immunosuppressive,which hold great potential for medical applications.In this study,dramatically enhanced prodigiosins(RED) production in Streptomyces coelicolor was achieved by combinatorial metabolic engineering,including inactivation of the repressor gene ohkA,deletion of the actinorhodin(ACT) and calcium-dependent antibiotic(CDA) biosynthetic gene clusters(BGCs) and multi-copy chromosomal integration of the RED BGC.The results showed that ohkA deletion led to a 1-fold increase of RED production over the wild-type strain M145.Then,the ACT and CDA BGCs were deleted successively based on the AohkA mutant(SBJ101).To achieve multi-copy RED BGC integration,artificial ΦC31 attB site(s) were inserted simultaneously at the position where the ACT and CDA BGCs were deleted.The resulting strains SBJ102(with a single deletion of the ACT BGC and insertion of one artificial attB site) and SBJ103(with the deletion of both BGCs and insertion of two artificial attB sites) produced 1.9-and 6-fold higher RED titers than M145,respectively.Finally,the entire RED BGC was introduced into mutants from SBJ101 to SBJ103,generating three mutants(from SBJ104 to SBJ106) with chromosomal integration of one to three copies of the RED BGC.The highest RED yield was from SBJ106,which produced a maximum level of 96.8 mg g^(-1) cell dry weight,showing a 12-fold increase relative to M145.Collectively,the metabolic engineering strategies employed in this study are very efficient for the construction of high prodigiosin-producing strains.

关 键 词:Streptomyces coelicolor prodigiosins metabolic engineering multi-copy integration 

分 类 号:Q936[生物学—微生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象