低分辨率医学图像的多图谱分割方法  

Multi-atlas image segmentation for the low-resolution medical images

在线阅读下载全文

作  者:贺光华[1] 祝汉灿[2] 梁克维[3] 

机构地区:[1]浙江越秀外国语学院国际商学院,浙江绍兴312000 [2]绍兴文理学院数理信息学院,浙江绍兴312000 [3]浙江大学数学科学学院,浙江杭州310027

出  处:《高校应用数学学报(A辑)》2017年第3期371-378,共8页Applied Mathematics A Journal of Chinese Universities(Ser.A)

基  金:国家自然科学基金(61602307;11471253)

摘  要:基于多图谱的图像分割方法因其分割精度高和鲁棒性强,在医学图像分割领域被广泛研究,主要包含图像配准和标签融合两个步骤.目前对多图谱分割方法的研究通常都是在图谱图像和待分割目标图像具有相同分辨率的情况下展开的.然而,由于受图像采集时间,采集设备等影响,临床实践中采集的影像大多是低分辨率数据,使得目前在影像研究中广泛使用的方法无法有效应用于临床实践.因此,针对这一问题,我们结合图像超分辨率恢复方法,提出了精确鲁棒的低分辨率医学图像的多图谱分割方法,实验结果显示提出的方法显著地提高了多图谱分割方法的分割精度.Due to the high segmentation accuracy and robustness, the multi-atlas based image segmentation method is currently a hot topic. It consists of two main components which are the image registration and the label fusion. The most of current multi-atlas based image segmentation methods consider the situation that the atlas images and the target image have the same resolution. But, we will always obtain the low-resolution target images because of the restriction on the acquisition time and collecting equipment. On the other hand, the atlases are generated before the target images, and we often use high-resolution images to obtain high-resolution atlases. Since the registration from high-resolution atlases to the low-resolution target image may not obtain the exact results, the accu- racy of the multi-atlas based image segmentation methods will be reduced when applied to segment the low-resolution target images. In order to solve this problem, we present an accurate and robust image segmentation method for low-resolution target images by combining the advantages of the im- age super-resolution method and the multi-atlas segmentation method. The experiment results show that the proposed method significantly improves the accuracy of the original multi-atlas based image segmentation method.

关 键 词:低分辨率图像 图像配准 多图谱图像分割 图像超分辨率恢复 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象