机构地区:[1]College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, P. R. China [2]State Key Laboratory of Satellite Ocean Environment Dynamics (SOED), State Oceanic Administration, Hangzhou 310012, P. R. China [3]Shanghai Ocean University, College of Marine Sciences, Shanghai 201306, P. R. China [4]The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, P. R. China
出 处:《Journal of Ocean University of China》2017年第5期766-774,共9页中国海洋大学学报(英文版)
基 金:the Science and Technology Basic Work of the Ministry of Science and Technology of China (No. 2012FY112300)
摘 要:Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers(CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya(MBP) in front of the Amery Ice Shelf(AIS). In late March the upper 100–200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about^(-1).90℃while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m^(-2), heat flux with the values of 9.8–287.0 W m^(-2) loss and the sea ice growth rates of 4.3–11.7 cm d^(-1) were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter(March to October) due to the air-sea-ice interaction, with an average size of about 5.0×10~3 km^2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers(CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya(MBP) in front of the Amery Ice Shelf(AIS). In late March the upper 100–200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about^-1.90℃while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m^-2, heat flux with the values of 9.8–287.0 W m^-2 loss and the sea ice growth rates of 4.3–11.7 cm d^-1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter(March to October) due to the air-sea-ice interaction, with an average size of about 5.0×10^3 km^2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.
关 键 词:salinity ocean Mackenzie winter vertically autonomous remaining progressively rejection Winter
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...