机构地区:[1]College of Marine Sciences of Shanghai Ocean University, Shanghai 201306, P. R. China [2]National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, P. R. China [3]Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, P. R. China [4]Collaborative Innovation Center for National Distant-water Fisheries, Shanghai 201306, P. R. China
出 处:《Journal of Ocean University of China》2017年第5期840-846,共7页中国海洋大学学报(英文版)
基 金:the National Natural Science Foundation of China (No. NSFC41476129);the Shanghai Leading Academic Discipline Project (Fisheries Discipline);supported by Shanghai Ocean University International Center for Marine Studies and Shanghai 1000 Talents Program
摘 要:The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. edulis in the South China Sea. Because of the highly overlapping habitat and similar body morphology of the three squid species, we explored four different ways to identify them, by using statolith, upper beak, lower beak and a combination of statolith and beak. An outline geometric morphometric method and stepwise discriminant analysis were used to evaluate the most suitable method for the identification. We found that the combination of statolith and beak had the highest cross validation rate that was 75.0%, 87.5% and 88.7% for U. duvaucelii, L. beka and U. edulis, respectively. Using two beaks had similar results and the lowest cross validation rate was 60.0%, 50.0%, and 73.7% for the upper beak, 46.9%, 58.5% and 75.3% for the lower beak of U. duvaucelii, L. beka and U. edulis, respectively. Analyzing with the statolith had moderate cross validation which was 72.2%, 80.0%, and 87.7% for U. duvaucelii, L. beka and U. edulis, respectively. From the results it is suggested when the entire body of a squid is available, a combination of statolith and beak should be used for the identification. When only one hard tissue is available, species identification can be subjected to large errors.The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. edulis in the South China Sea. Because of the highly overlapping habitat and similar body morphology of the three squid species, we explored four different ways to identify them, by using statolith, upper beak, lower beak and a combination of statolith and beak. An outline geometric morphometric method and stepwise discriminant analysis were used to evaluate the most suitable method for the identification. We found that the combination of statolith and beak had the highest cross validation rate that was 75.0%, 87.5% and 88.7% for U. duvaucelii, L. beka and U. edulis, respectively. Using two beaks had similar results and the lowest cross validation rate was 60.0%, 50.0%, and 73.7% for the upper beak, 46.9%, 58.5% and 75.3% for the lower beak of U. duvaucelii, L. beka and U. edulis, respectively. Analyzing with the statolith had moderate cross validation which was 72.2%, 80.0%, and 87.7% for U. duvaucelii, L. beka and U. edulis, respectively. From the results it is suggested when the entire body of a squid is available, a combination of statolith and beak should be used for the identification. When only one hard tissue is available, species identification can be subjected to large errors.
关 键 词:edulis discriminant validation overlapping Species habitat moderate stepwise outline length
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...