机构地区:[1]Shandong Provincial Key Laboratory of Ocean Engineering,Ocean University of China,Qingdao 266100,P.R.China [2]CIMC Offshore Institute Co.Ltd.,Yantai 264670,P R.China
出 处:《Journal of Ocean University of China》2017年第4期575-584,共10页中国海洋大学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
摘 要:Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
关 键 词:SLOSHING horizontal perforated plate numerical simulation flow field energy dissipation
分 类 号:U661[交通运输工程—船舶及航道工程] U663.8[交通运输工程—船舶与海洋工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...