检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宏涛[1] 王汉斌[1] 陈晓怀[1] 程银宝[1] 姜瑞[1]
机构地区:[1]合肥工业大学仪器科学与光电工程学院,安徽合肥230009
出 处:《计量学报》2017年第5期559-562,共4页Acta Metrologica Sinica
基 金:国家自然科学基金(51275148);合肥工业大学青年教师创新项目(JZ2014HGQC0126)
摘 要:为在产品检验前合理预估测量不确定度对批量产品检验结果的影响,分别面向全数检验和抽样检验方法,以误判率为指标,量化表示产品供求双方风险;基于绝对概率和条件概率,建立全数检验误判风险模型,在此基础上,推导抽样检验误判率计算公式。实例分析结果表明,提出模型可综合反映测量不确定度引起的误判风险;基于绝对概率模型的误判率计算结果,可作为产品检验测量方案选择的依据;基于条件概率模型的误判率计算结果,可更直观地反映产品供求双方风险,促使检验人员更为慎重地进行合格性判定。In order to reasonably pre-estimate the influence of measurement uncertainty on the results of batch product inspection, for total inspection and sampling inspection methods, misjudgment risks for both producer and consumer sides were quantified with indices of misjudgment probabilities. Based on absolute probability and conditional probability, models for the risks of total inspection were established, and on the basis, calculation formulas for sampling inspection were derived. Example results show that proposed models can comprehensively reflect risks caused by measurement uncertainty. The misjudgment probabilities calculated by absolute probability models can be used as the basis for the selection of the measurement plan for product inspection. The misjudgment probabilities calculated by conditional probability models can more directly reflect the risks for both producer and consumer sides and prompt inspectors to make decisions more carefully.
分 类 号:TB92[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222