基于样本熵的风力发电机早期故障检测  被引量:6

Incipient Fault Detection of Generators in Wind Turbines Based on Sample Entropy

在线阅读下载全文

作  者:谢平[1] 王一凡[1] 江国乾[1] 黄梦君[1] 何群[1] 

机构地区:[1]燕山大学电气工程学院河北省测试计量技术及仪器重点实验室,河北秦皇岛066004

出  处:《计量学报》2017年第5期626-630,共5页Acta Metrologica Sinica

基  金:河北省高等学校科学技术研究重点项目(ZD20131080);秦皇岛市科技支撑计划项目(201502A008)

摘  要:针对发电机定子匝间短路和转子断条等早期故障特征具有幅值小、非稳态、易受工况影响等特点,引入样本熵算法实现风力发电机定子电流和电磁转矩信号特征提取,并模拟不同负载条件下故障信号,实现定量参数分析。分析结果表明,样本熵算法适用于在变工况及噪声干扰条件下,对短数据参量进行分析并实现故障特征定量描述,可用于风力发电机早期故障检测和实时在线监测。In order to test the generator incipient faults, such as stator windings inter-turn and broken rotor bars, which have such characteristics with small amplitude, non-stationary and susceptible to load variations, a sample entropy algorithm is introduced to perform fault feature extraction fl'om the stator current and electromagnetic torque signals of generators in wind turbines. The proposed method is used to analyze fault signals under different load conditions to realize the quantitative representation of faulty signals. The results demonstrate that sample entropy algorithm is applicable to achieve fault characteristics quantification with data of short length, especially under varying operations and noise environments and it has great potentials in early fault detection and real-time online monitoring.

关 键 词:计量学 风力发电机 样本熵 定子匝间短路 转子断条 变负载 

分 类 号:TB971[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象