量子三元Werner衍生态的几何失协(英)  

Geometric discords inqutrit Werner derivatives

在线阅读下载全文

作  者:李国锋[1] 刘益民[2] 谢传梅[1] 尹晓峰[1] 张战军[1] 

机构地区:[1]安徽大学物理与材料科学学院,安徽合肥230601 [2]韶关大学物理系,湖南韶关512005

出  处:《安徽大学学报(自然科学版)》2017年第5期32-39,共8页Journal of Anhui University(Natural Science Edition)

基  金:Foundation item:Supported by the National Natural Science Foundation of China(11375011,11372122);Anhui Province Natural Science Foundation(1408085MA12)

摘  要:量子三元Werner衍生态是由量子三元Werner态经幺正算符作用而生成的态.采用文献(DAKIC B,VEDRAL V,BRUKNER C.Necessary and sufficient condition for nonzero quantum discord[J].Phys Rev Lett,2010,105:190502)定义的几何失协方法,研究量子三元Werner衍生态的量子关联(QC).研究发现:量子三元Werner衍生态GD的解析式显示了衍生态GD的对称性,量子三元Werner态的任何衍生态的GD值都不超过量子三元Werner态的GD值.Qutrit Werner derivatives are the resultant ones of qutrit Werner states transformed by unitary operations. In this paper, quantum correlation(QC) in qutrit Werner derivatives was studied with geometric discord (GD) defined in the paper (DAKIC B, VEDRAL V, BRUKNER C. Necessary and sufficient condition for nonzero quantum discord [J]. Phys Rev Lett, 2010, 105: 190502). The study found that the analytic GD expressions of the derivatives showed the symmetric features of the GD, and the GD amount in each derivative could not exceed that in the original qutrit Werner state.

关 键 词:量子关联 量子三元Werner衍生态 几何失协 

分 类 号:O413.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象