检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市沙坪坝区400044 [2]国网四川省电力公司遂宁供电公司,四川省遂宁市629000
出 处:《电网技术》2017年第9期2808-2815,共8页Power System Technology
基 金:国家自然科学基金项目(51177177)~~
摘 要:储能系统在缓解可再生能源发电和负荷波动对系统安全稳定性的影响中起着重要作用。针对配网系统,考虑储能配置与储能系统运行之间的相互影响,以最小化投资运行总成本和电压偏差为目标,建立双层储能多目标优化配置模型。在模型的外层,优化储能系统的配置方案;在模型的内层,进行无功电压调节、发电机控制以及储能充放电功率控制。将教学算法(teaching-learning based optimization,TLBO)引入粒子群算法(particle swarm optimization,PSO)中,提高优化算法的搜索能力,采用多目标PSO-TLBO算法求解耦合的双层储能优化配置模型。最后以IEEE 30节点系统进行算例仿真实验,实验结果验证了文中储能配置方法的有效性。Energy storages system(ESS) plays a vital role in mitigating effect of intermittent wind power and loads. A novel ESS allocation approach considering the related effects of ESS installation and system operation is presented for distribution network to improve economy and technical benefits. The double-layer ESS allocation model is established. In outer layer, the ESS allocation schemes are optimized; in inner layer, the charge/discharge power of ESS, generation output and reactive voltage are controlled. Teaching-learning based optimization(TLBO) is introduced into particle swarm optimization(PSO) to improve the search ability, called multi-objective PSO-TLBO, to solve the coupled double-layer ESS allocation model. Finally, IEEE-30 bus system is adopted for case study. The simulation results demonstrate the effectiveness of proposed ESS allocation method.
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57