基于灰狼优化算法的多机电力系统稳定器参数最优设计  被引量:30

Multi-Machine PSS Parameter Optimal Tuning Based on Grey Wolf Optimizer Algorithm

在线阅读下载全文

作  者:左剑[1] 张程稳 肖逸[1] 李银红[1] 段献忠[1] 

机构地区:[1]强电磁工程与新技术国家重点实验室(华中科技大学),湖北省武汉市430074

出  处:《电网技术》2017年第9期2987-2995,共9页Power System Technology

摘  要:灰狼优化(grey wolf optimizer,GWO)算法作为一种新的、高效的群体智能优化算法,可应用于电力系统优化问题。提出了采用GWO算法的多机电力系统稳定器参数优化设计方案。将传统超前-滞后型电力系统稳定器(PSS)的参数设计建模为基于特征值的二次性能目标优化问题,通过向左半复平面移动机电振荡特征值实现对不同运行状态下机电模态阻尼系数的最大化进行寻优。GWO算法具有对初始取值不敏感,优化效率较高和全局寻优性能好等特点,因此被用来迭代搜索最优PSS参数值。通过IEEE New England 39节点算例的特征值分析和非线性时域仿真,验证了基于GWO算法优化整定的电力系统PSS在各种系统运行状态下抑制系统机电振荡的有效性和鲁棒性,并通过与传统相位补偿方法设计的PSS阻尼性能对比,表明所提GWO算法优化PSS参数具有明显优越性。进一步的算法性能分析表明,GWO算法具有对初值不敏感和稳健性强等优点。A novel highly-efficient swarm intelligence optimization algorithm known as grey wolf optimizer(GWO) can be applied to power system optimization. A parameter optimization design scheme is illustrated in this paper for optimal tuning of power system stabilizer(PSS) parameters in a multi-machine power system. Traditional leading-lag type PSS parameter design is modeled as an optimization problem with objective of optimal eigenvalue-based quadratic performance. The optimization is to maximize damping ratio of electromechanical oscillation modes under different operating conditions by shifting electromechanical eigenvalues toward left-half complex plane. GWO algorithm has characteristics of insensitivity to initial solution values, higher optimization efficiency and global optimization ability. It is employed to iteratively search for optimum solution of PSS parameters. Simulation results of linear frequency-domain eigenvalue analysis and nonlinear time-domain dynamic simulation on IEEE New England 39 bus test system are presented to demonstrate effectiveness and robustness of the proposed GWO-algorithm-based PSS in damping electromechanical oscillations of power system under a wide range of operating conditions. Damping performance of the proposed PSS has obvious superiority over traditional phase-compensationdesigned PSS. Further algorithm performance analysis shows that GWO algorithm is robust and not sensitive to initial values.

关 键 词:灰狼优化算法(GWO) 机电振荡 多机电力系统 参数优化 电力系统稳定器(PSS) 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象