基于常规测井资料的火山岩岩性识别方法研究——以渤海海域中生界为例  被引量:15

Study on volcanic lithology identification methods based on the data of conventional well logging data:a case from Mesozoic volcanic rocks in Bohai bay area

在线阅读下载全文

作  者:叶涛 韦阿娟 邓辉 曾金昌 高坤顺 孙哲 

机构地区:[1]中海石油(中国)有限公司天津分公司渤海石油研究院,塘沽300452 [2]中海油能源发展采油技术服务公司钻采工程研究院,天津300452

出  处:《地球物理学进展》2017年第4期1842-1848,共7页Progress in Geophysics

基  金:国家重大专项(2011ZX05023-006-002)资助

摘  要:渤海海域中生界火山岩广泛分布、岩石类型复杂多样,同时研究区缺少成像、元素等特殊测井资料,岩性识别存在困难.以研究区钻井取心、壁心以及薄片鉴定为基础,探索了基于常规测井资料的火山岩岩性识别方法,并开展了组合应用.结果表明曲线特征法以定性描述为主,受人为因素影响较大;交会图利用较少曲线,难以充分利用曲线信息,识别精度相对较低;决策树法与Bayes判别法综合多条曲线信息进行识别,判别精度较高,但决策树法对单条曲线细微变化响应敏感,岩性识别稳定性较差,而Bayes法综合利用多条曲线识别,判别精度较高的同时具有较强的稳定性.实际应用中通过决策树法与Bayes判别法的组合应用,同时利用曲线形态以及交会图判别结果进行约束,岩性识别精度得到了较大提升.The Mesozoic volcanic rocks of Bohai bay area are widely distributed and difficult to identify without FMI and ECS data.Based on the abundant data of cores,lateral cores and rock sections,volcanic identification methods has been studied with the comprehensive methods for using of the conventional well logs.The result shows that the curve features can describe lithology qualitatively but influenced by human factor.Using a little information of the curves,the identification accuracy of cross plot is relatively low whereas the identification accuracies of decision tree and Bayes stepwise discrimination are higher for using more information of the curves.The indentified lithology profile of decision tree method changes severely in response to the single sensitive curve.The stability of the Bayes method is relatively high for the using of multi-curves.Comprehensive interpretation of the lithology need both of the result of Bayes and decision tree,and also with the constraint of integrated curves and crossplot at the same time,which can improve the accuracy of identified lithology.

关 键 词:火山岩 识别方法 常规测井 渤海海域 中生界 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象