机构地区:[1]华中农业大学工学院,武汉430070 [2]农业部长江中下游农业装备重点实验室,武汉430070
出 处:《农业工程学报》2017年第15期49-56,共8页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金资助项目(51405180);国家油菜产业体系专项资助项目(CARS-13);农业部科研杰出人才及创新团队资助项目;湖北省重大技术创新专项资助项目(2016ABA094)
摘 要:针对气力式油菜精量联合直播机因拖拉机后输出轴转速变化影响气力系统中风机工作转速,导致排种器工作气压波动,进而降低排种性能的问题,提出一种基于溢流释压的气力系统稳压控制方法,即通过测试风机实际转速变化情况、风机转速与气力系统气压关系,确定溢流阀预设气压值,根据该预设值计算溢流阀的释压弹簧结构参数和工作参数,并通过流量-压力理论分析和稳压控制性能试验验证参数有效性。以2BFQ-6型油菜精量联合直播机气力系统为对象,利用该方法开展稳压控制试验:通过田间测试确定播种机组在田间稳定作业时风机工作转速变异系数达8.15%,结合测定的气力系统风机转速与气压关系,确定风机实际工作转速应在2 020~2 620 r/min范围内,正负气压阀溢流稳压控制预设值分别为1 000和-5 500 Pa;通过溢流释压阀结构及释压特性分析,确定采用中径30 mm、节距10 mm、有效圈数8圈、线径为1.0、1.5 mm的碳素钢丝圆柱螺旋弹簧作为正、负压释压阀的释压弹簧,其弹簧调节螺栓预压缩量分别为6.7和7.8 mm;稳压控制验证试验表明设计的稳压控制系统将排种器气室正压、负压偏差率分别降低45%和110%,使气室气压保持在适宜范围内,气压控制响应灵敏性及稳定性均满足要求;当风机工作转速在2 000~2 700 r/min范围内变化时,排种器的排种量变异系数减小2.68%,提高了排种稳定性。研究表明提出的溢流释压稳压控制方法可有效解决油菜直播机田间作业时排种器工作气压波动大、排种量稳定性差的现实问题,可为播种机设计、气力式排种系统性能优化提供参考。The tractor load keeps varying randomly during the tractor-pneumatic planter unit working. It could cause the air pressure in pneumatic precision seed-metering system to become not as constant as the design due to the working speed fluctuation of air pump on the planter led by the variation in rotation velocity of the tractor's power output shaft. Consequently, it would deteriorate the distribution uniformity of seeds in the field and worsen the growth and final yield of crops. To solve this problem, an effective air pressure stabilizing method of pneumatic seed-metering system was proposed based on spring-loaded air pressure relief valve. The first step was to measure the rotation velocity of the tractor's power output shaft in the field. After that, the relationships of the speed of the air pump and the air pressure of the pipeline and the seed-metering device were determined through the bench test. Then, the predetermined control point value of air pressure relief valve was estimated, and the structure and working parameters of air pressure relief valve spring were calculated and selected. Additionally, theoretical analysis and experiments were performed to demonstrate the efficiency of the selected relief valve. A practical engineering in precision combined rapeseed planter, called 2BFQ-6, was used to demonstrate the application of proposed air pressure stabilizing method. A field test was conducted to determine the working speed of the air pump and a laboratory test was implemented to confirm the relationships of the air pump working speed, air pressure in the pipes and air pressure in the chamber of seed-metering device. The test results showed that the coefficient of variation of working speed of the air pump was less than 4.38% when the tractor was working with the same gear, and the coefficient of variation was less than 9.2% as the tractor was working with different gear. To ensure persistent seeding of the seed-metering device, the working speed of the air pump should be in the range of 2 020-2 620
关 键 词:机械化 控制 种子 油菜精量联合直播机 气力式排种系统 溢流释压 稳压控制 试验
分 类 号:S223.24[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...