机构地区:[1]辽宁省农业科学院耕作栽培研究所,沈阳110161 [2]中国农业大学资源与环境学院,北京100193 [3]中国农业科学院农业资源与农业区划研究所,北京100081
出 处:《农业工程学报》2017年第15期168-176,共9页Transactions of the Chinese Society of Agricultural Engineering
基 金:农业部公益性行业科研专项资金项目(201303130);国家重点研发计划(2016YFD0300204);辽宁省"百千万人才工程"资助项目
摘 要:为了探明秸秆还田配施氮肥耕层构造对春玉米产量及土壤物理性状的影响,2014-2015年在辽宁铁岭设置了秸秆0 kg/hm^2+纯N 0 kg/hm^2(S0F0),秸秆9 000 kg/hm^2+纯N 0 kg/hm^2(SN0),秸秆9 000 kg/hm^2+纯N 112.5 kg/hm^2(SN1),秸秆0 kg/hm^2+纯N 225 kg/hm^2(S0N2)(当地传统种植方式,CK),秸秆9 000 kg/hm^2+纯N 225 kg/hm^2(SN2),秸秆9 000 kg/hm^2+纯N 337.5 kg/hm^2(SN3)6个处理开展了研究。结果表明,秸秆还田配施氮肥耕层构造对春玉米产量、土壤物理性状、根系形态等指标影响显著(P<0.05)。全量还田9 000 kg/hm^2和配施纯氮225 kg/hm^2产量最高,比秸秆不还田2 a增产1.10%~11.56%,但产量并未随着施氮量的增加而持续增加;群体生物产量随着施氮量的增加而增加,收获指数在0.46~0.59之间。秸秆还田配施氮肥耕层构造可显著提高土壤含水量,降低土壤容重,调节土壤三相比;秸秆还田配施氮肥耕层构造春玉米根数、根长、根体积、根干质量等根系形态指标均优于秸秆不还田,且随着氮肥施入量的增加,各项指标均表现越好。因此,综合分析认为,秸秆还田量9 000 kg/hm^2和配施氮肥225 kg/hm^2是辽北棕壤区比较理想的耕层构造模式和秸秆还田技术,在该区域农业发展中具有一定的应用价值。Improving plough layer is necessary for solving the problems of shallow and compacted plough layer and plough layer lack, which are caused by a long-term unreasonable tillage. In order to examine the effects of straw turnover and different nitrogen(N) additions to plough layer on the yield, soil physical properties, root morphology of spring maize in dry land, 6 treatments were conducted in Tieling of Liaoning Province from 2014 to 2015. The 6 treatments included straw turnover of 0 kg/hm^2 and adding pure N of 0 kg/hm^2(S0F0), straw turnover of 9 000 kg/hm^2 and adding pure N of 0 kg/hm^2(SN0), straw turnover of 9 000 kg/hm^2 and adding pure N of 112.5 kg/hm^2(SN1), straw turnover of 0 kg/hm^2 and adding pure N of 225 kg/hm^2(S0N2)(local traditional cropping pattern, CK), straw turnover of 9000 kg/hm^2 and adding pure N of 225 kg/hm^2(SN2), straw turnover of 9 000 kg/hm^2 and adding pure N of 337.5 kg/hm^2(SN3). The result showed that treatments of straw turnover and different N additions significantly influenced spring maize yields, soil physical properties and root morphology. The treatment of straw turnover of 9 000 kg/hm^2 and N addition of 225 kg/hm^2 had the highest yield, increasing by 1.10%-11.56% compared with none straw turnover. This increase in yield of spring maize was mainly contributed by the augmented 100-grain weight and grain number, as well as the decreased bald tip. The N addition did not promote the yield while improved the biomass of whole crop. On the same level of N addition, the spring maize yield of straw turnover treatment was 3.08%-3.56% higher than that of none straw turnover treatment, whereas the harvest index of straw turnover treatment was 2.43%-3.12% lower than that of none straw turnover treatment. Plough layer construction of straw turnover and N addition could significantly lower soil bulk density, especially in soil depth of 15-20 cm. Treatment of straw turnover plus N fertilizer to plough layer construction could also loosen top soil, and fur
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...