检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付鑫[1]
出 处:《数学年刊(A辑)》2017年第2期227-242,共16页Chinese Annals of Mathematics
摘 要:计算了L?bell多面体上的小覆盖的等变微分同胚类的个数.在1991年,Davis和Januszkiewicz提出了小覆盖的概念,给出了组合和拓扑间的一种直接联系,并证明了单凸多面体上的特征映射(Z^n_2染色)与该多面体上的小覆盖一一对应.文中作者给出了L?bell多面体上的自同构群和染色规律,结合Burnside引理计算了一般的L?bell多面体上的小覆盖的等变微分同胚类的个数.In this paper, the number of equivariant diffeomorphism classes of small covers over LSbell polytopes is calculated. The notion of small cover was introduced by Davis and Januszkiewicz in 1991, which gives a direct connection between topology and combinatorics, and it is proved that all small covers over a simple convex polytope p^n correspond to all characteristic functions (Z2^n-colorings) defined on all facets of P^n. The author finds the automorphism of LSbell polytopes and the coloring number defined on them, and calculates the number of equivariant diffeomorphism classes of small covers over LSbell polytopes, with Burnside lemma applied.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15