检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Rui LIU YouMing
机构地区:[1]Department of Applied Mathematics, Beijing University of Technology [2]College of Science, Tianjin University of Technology
出 处:《Science China Mathematics》2017年第10期1901-1922,共22页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11526150, 11601383 and 11271038)
摘 要:This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over Lprisks for p 2, and a nearly-optimal result for 1 < p < 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011).This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p 〈 ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over L^p risks for p≥2, and a nearly-optimal result for 1 〈 p 〈 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011).
关 键 词:wavelet estimation supersmooth density additive noise OPTIMALITY
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.228.247