检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑岩 王江宁[1] 王天山 林聪田[1] 孙悦华[1] 纪力强[1] ZHENG Yane WANG Jiang-Ninge WANG Tian-Shane LIN Cong-Tiane SUN Yue-Huae JI Li-Qiange(Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China)
机构地区:[1]中国科学院动物研究所动物生态与保护生物学院重点实验室,北京100101 [2]中国科学院大学生命科学学院,北京100049
出 处:《动物学杂志》2017年第5期768-776,共9页Chinese Journal of Zoology
基 金:国家自然科学基金项目(No.31272286)
摘 要:将录自北京、甘肃、四川和陕西7个地区共117段云南柳莺(Phylloscopus yunnanensis)的鸣唱样本分别提取短时特征Mel倒谱系数(MFCC),利用系统聚类方法,构建云南柳莺不同地理种群鸣声特征之间的树状关系图,并对云南柳莺地理鸣声差异产生机制的可能因素(地理距离、海拔等)进行探讨。这是基于鸣声短时特征的物种识别在研究同一物种不同地理种群关系中的首次尝试。结果显示,其鸣声地理差异与距离之间没有显著相关性(Pearson,r=﹣0.036,P=0.762,n=117),但与海拔存在显著的相关性(Pearson,r=﹣0.836,P<0.001,n=117)。The short time feature Mel frequency cepstral coefficients (MFCC) were extracted (for the process, see Fig. 2) from 117 sound samples of Chinese leaf warbler (Phylloscopus yunnanensis), which were collected from 7 regions in Beijing, Gansu, Sichuan and Shaanxi (Table 1, Fig. 1). Then we constructed the cluster tree (Table 2, Fig. 3) of the sound characteristics of different geographic populations by using pattern recognition method. Finally, we discussed the mechanism of geographical variations in songs of Chinese leaf warbler. The results showed that there were no significant differences between MFCC feature of the songs and their distances or habitats (Pearson, r = - 0.036, P = 0.762, n = 117). However, the sound of Chinese leaf warbler and altitude showed significant differences (Pearson, r = - 0.836, P 〈 0.001, n = 117). This is the first attempt for geographic population relationship based on short time feature of sound of birds.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62