检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊重俊[1] 金阳[1] 杨云鹏[1] FAN Chongjun J IN Yang YANG Yunpeng(Business School, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
出 处:《系统管理学报》2017年第5期941-946,共6页Journal of Systems & Management
基 金:国家自然科学基金资助项目(71303157);上海市教育委员会科研创新重点项目(14ZZ131)
摘 要:基于SIS传播机制,提出了一个可以用来研究同时具有节点活跃度与疾病交互双重影响因素的复杂网络疾病传播模型。与以往研究不同,本文研究的是两个不同的疾病,同时传播在同一群体中,并且通过疾病间的交互影响来改变自身的传播概率。同时,群体中的个体也会根据一定的活跃度来改变自身活跃状态,进而影响与其他个体的接触状态。在该模型基础上,根据异构平均场理论,分析了疾病传播的动态演化过程和临界阈值。通过计算机仿真验证了模型和理论分析的准确性。结果显示,数值模拟仿真与理论分析结果相吻合,进一步验证模型的准确性。另外,通过模拟疾病间相互损害、相互促进的相反传播情况,发现系统临界阈值的大小会随着个体活跃度的降低而减小。Based on susceptible-infected-susceptible(SIS)transmission scheme,this paper proposes a framework which can describe the spreading dynamics of two interacting diseases across active nodes on complex networks.Different from previous studies,the two different diseases are propagated concurrently among the same population that can interact with each other by modifying their transmission rates.At the same time,each node of the network rotates between active state and inactive state according to certain probabilities.Based on heterogeneous mean-field approach,we first compute the temporal evolution to characterize the spreading dynamics and then analyze the epidemic thresholds of the two diseases.In addition,these theoretical predictions can be further demonstrated by numerical simulations.Moreover,we also simulate the mutual enhancement and mutual impairment scenario and find that both the value of critical threshold and final size of spreading dynamics are reduced as the node activity rate decreases.
分 类 号:N94[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.192