机构地区:[1]Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering,Jiangsu Normal University [2]State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences (CAS) [3]State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology
出 处:《Chinese Physics B》2017年第10期255-261,共7页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.61475189,61405240,and 61575086);the Natural Science Basic Research Project in Shaanxi Province,China(Grant No.2015JQ5141);the Jiangsu Key Laboratory of Advanced Laser Materials and Devices,Jiangsu Normal University,China(Grant No.KLALMD-2015-08)
摘 要:The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalco- genide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of [S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing [GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected [GeS4] tetrahedra and [SbS3] pyramids. Moreover, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of [S2Sb-SbS2] SUs. When CdS is added into GeS2 glass, [Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-SbzS3 glasses can dissolve up to 20-mo1% CdS, implying that Sb2S3 could delay the construction of [Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalco- genide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of [S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing [GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected [GeS4] tetrahedra and [SbS3] pyramids. Moreover, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of [S2Sb-SbS2] SUs. When CdS is added into GeS2 glass, [Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-SbzS3 glasses can dissolve up to 20-mo1% CdS, implying that Sb2S3 could delay the construction of [Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.
关 键 词:chalcogenide glass Raman spectroscopy structure Ge-Sb-Cd-S system
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...