SIMHYD模型在松花江流域应用的适应性分析  被引量:4

Adaptability Analysis of the Application of SIMHYD Model in the Songhua River Basin

在线阅读下载全文

作  者:李鸿雁[1] 李悦[1] 刘海琼 王小军[2,3] 王世界[1] 王傲[4] 

机构地区:[1]吉林大学环境与资源学院,长春130021 [2]南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京210029 [3]水利部应对气候变化研究中心,南京210029 [4]吉林省水文水资源局长春分局,长春130022

出  处:《吉林大学学报(地球科学版)》2017年第5期1502-1510,共9页Journal of Jilin University:Earth Science Edition

基  金:国家自然科学基金项目(51379088)~~

摘  要:近年来,概念性水文模型在水文预报中得到了广泛应用,为探讨SIMHYD模型在松花江流域应用的适应性,为其汛期的防洪控制、水库调度提供依据,本文选择嫩江流域上游石灰窑断面和第二松花江流域白山断面汛期(6—9月)的日径流过程进行模拟。计算结果表明,SIMHYD模型在松花江流域的应用中存在区域性差异:在嫩江流域上游石灰窑汇水区,率定期的纳什系数为0.501,验证期的纳什系数为0.158,模型应用的适应性较差;在第二松花江流域白山汇水区,率定期的纳什系数为0.777,验证期的纳什系数为0.729,模型应用的适应性优良。模型对于洪峰处的模拟存在较大误差,主要原因在于该模型没有考虑到产流时空分布不均及河道汇流计算过程。In recent years, the conceptual hydrological model has been widely used in hydrological forecasting. In order to explore the adaptability of SIMHYD model in the Songhua River basin, and provide the basis for flood control and reservoir control in flood season, we selected the Shihuiyao section located in the upper Nenjiang and the Baishan section located in the upstream of the second Songhua River to simulate the daily runoff of flood period. The results show that there are regional differences of the application of the model in the Songhua River basin. For the Shihuiyao collection area, the Nash-Sutcliffe coefficient is 0. 501 in calibration period, and 0. 158 in verification period, poor adaptability of the model; For Baishan collection area, the Nash-Sutcliffe coefficient is 0. 777 in calibration period, and 0.729 in verification period, good adaptability of the model. There is a big error for the simulation of flood peaks, which is mainly caused by that the model does not take into account the uneven space-time distribution of runoff generation and the calculation process of river concentration.

关 键 词:SIMHYD模型 松花江流域 汛期 适应性分析 

分 类 号:P338.1[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象