检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古大学满洲里学院,内蒙古满洲里021400 [2]吉林大学仪器科学与电气工程学院,长春130061
出 处:《沈阳工业大学学报》2017年第5期529-534,共6页Journal of Shenyang University of Technology
基 金:国家自然科学基金资助项目(61403160);内蒙古高等学校科学研究基金资助项目(NJZY6558)
摘 要:针对图像数据库日渐庞大的问题,研究了将特征提取与深度学习相结合进行图像检索的方法,提出了基于Gabor小波变换和受限玻尔兹曼机(RBM)的特征提取和降维模型.将整幅图像划分成局部图像块,利用Gabor滤波器组提取图像特征,通过RBM对特征进行学习和编码,从而实现图像特征的降维处理.采用基于深度信念网络(DBN)和Softmax分类器的图像检索算法,利用Corel图像库进行新方法的图像检索实验,并与其他两种方法进行比较.结果表明,本文方法在准确率、查全率和检索时间上均具有较好的性能,能得到更好的图像检索结果.To solve the problem that the image database is becoming larger,an image retrieval method combined with both feature extraction and deep learning was investigated,and a model for feature extraction and dimensionality reduction was proposed based on Gabor wavelet transformation and restricted Boltzmann machine( RBM). The whole image was divided into local image blocks,and a set of Gabor filters were used to extract the image features,and the image features were studied and encoded with RBM. Hence,the dimensionality reduction of image features could be achieved. An image retrieval algorithm based on both deep belief networks( DBN) and Softmax classifier was adopted. In addition,the Corel image database was used to perform the image retrieval test for the new method,and was compared with other two methods.The results show that the proposed method has better performance in precision rate,recall rate and retrieval time,and can obtain better image retrieval results.
关 键 词:图像检索 GABOR小波 特征提取 降维 深度学习 受限玻尔兹曼机 深度信念网络 分类器
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28