检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢家智[1] 车四方 Xie Jiazhi Che Sifang
机构地区:[1]西南大学经济管理学院
出 处:《统计研究》2017年第9期44-55,共12页Statistical Research
基 金:国家社会科学基金重点项目"巨灾风险管理机制设计及路径选择研究"(12AGL008);重庆市重点文科基地项目"社会转型背景下农户风险偏好与农户收入差距"(16SKB041);西南大学决策咨询项目"社会化预期与公共情绪管理"(2016SWUJCZX09);中央高校基本科研业务费专项资金项目"社会资本与农户多维贫困"(SWU1709413)的资助
摘 要:多维贫困理论与方法更有助于对贫困的精准识别和量化。本文构建了新型多维贫困指标体系,利用中国家庭追踪调查(CFPS)数据,引入人工神经网络方法,测度并分解了农村家庭多维贫困的广度、深度和强度水平。研究结论表明:随着贫困维度的增加,多维贫困的广度、深度和强度指数下降,表明农村家庭不易发生多维极端贫困;农村家庭多维贫困指数(MPI)呈西高东低态势,表明农村家庭多维贫困具有典型的区域分布特征。此外,多维贫困指数分解结果显示,收入、金融和教育等因素是我国农村家庭致贫的主因。其中,东部地区金融因素影响最大,而中西部地区则为收入因素。研究结论为贫困的识别和精准扶贫提供了政策依据。Multidimensional poverty theory and technique are more helpful to precisely identify and quantify poverty. This paper introduces a new muhidimensional poverty index (MPI) system and the artificial neural network method. By using the China family Panel Studies (CFPS) data, it measures and decomposes the breadth, depth and intensity level of Chinese household multidimensional poverty. The research conclusion show that multidimensional poverty breadth, depth and intensity index decrease with the increase of the dimension of poverty, that is, the peasant households less prone to multidimensional extreme poverty households; and the MPI of peasant households in the west is high while that is low in the east, which means the typical regional distribution. In addition, the MPI decomposition results show that factors of income, finance and education are the main reason of rural households poverty in our country. In the east region, finance is the main factor, while in the central and western regions, income is the main factor. It provides the policy basis for the identification of poverty and the poverty alleviation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.188.69