基于谱分解的降阶求根MUSIC算法  被引量:9

Reduced-dimension Root-MUSIC Algorithm Based on Spectral Factorization

在线阅读下载全文

作  者:闫锋刚[1] 刘秋晨 邵多 王军[1] 王坤[3] 金铭[1] 

机构地区:[1]哈尔滨工业大学(威海) [2]西安电子科技大学 [3]中国人民解放军63891部队

出  处:《电子与信息学报》2017年第10期2421-2427,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61501142);中国博士后科学基金(2015M571414);威海市科技攻关和哈尔滨工业大学(威海)学科建设引导基金(WH20160107);中央高校基本科研业务费专项资金(HIT.NSRIF.201725)~~

摘  要:求根多重信号分类(Root-MUSIC)算法以多项式求根代替谱峰搜索,降低了波达方向(DOA)估计的计算量,但当阵元数较大时,其计算量依然很大。为进一步降低计算量,该文提出一种降阶Root-MUSIC(RD-Root-MUSIC)算法。该算法基于谱分解将Root-MUSIC多项式的阶次降低一半,再根据矩阵特征多项式与求根多项式的关系构造友阵,采用Arnoldi迭代计算得到友阵的L个大特征值(L为信号数)并估计DOA。仿真结果表明,RD-Root-MUSIC估计精度与Root-MUSIC相近,但其在大阵元下具有比Root-MUSIC更低的计算量。The Root MUltiple Signal Classification (Root-MUSIC) algorithm uses polynomial rooting instead of spectral search to reduce the computational complexity of Direction-Of-Arrival (DOA) estimation. However, when large numbers of sensors are exploited, this algorithm is still time-consuming. To further reduce the complexity, a novel Reduced-Dimension Root-MUSIC (RD-Root-MUSIC) algorithm based on spectral factorization is proposed, in which the dimension of polynomial involved in the rooting step is efficiently reduced to half. A companion matrix whose eigenvalues correspond to the roots of the reduced-dimension polynomial is further constructed, and the Arnoldi iteration is finally used to calculate only the L largest eigenvalues containing DOA information, where L is the number of signals. Simulation results show that RD-Root-MUSIC has a similar performance with much lower complexity as compared to Root-MUSIC.

关 键 词:波达方向估计 求根多重信号分类算法 谱分解 Arnoldi迭代 降阶Root-MUSIC 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象