检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈泽宗[1,2] 谢飞[1] 赵晨[1] 贺超[1]
机构地区:[1]武汉大学电子信息学院,湖北武汉430072 [2]武汉大学地球空间信息技术协同创新中心,湖北武汉430072
出 处:《华中科技大学学报(自然科学版)》2017年第9期18-22,共5页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(41376182;41506201);海洋公益性行业科研专项资助项目(201205032);湖北省科技支撑计划资助项目(2014BEC057);中央高校自主科研立项资助项目(2015212020204)
摘 要:针对射频干扰与回波信息在幅度和频域分布上的不同特性,提出了一种改进的经验模态分解(EMD)算法.该方法首先对包含回波信息和射频干扰的原始信号乘以给定的高频信号,将其搬移至高频带,然后通过EMD将回波信息和射频干扰分解到不同的本征模态函数(IMF),在每个IMF中对高出阈值的干扰部分置零,最后将处理后的IMF相加重构信号,并搬移回原频带.达到在抑制射频干扰的同时,无损干扰位置处的回波信息.该方法处理速度快捷,满足雷达实时处理要求.实测数据验证表明:提出的算法改进了原始EMD算法的缺点,并且在不损失回波信息的基础上最大程度地抑制了射频干扰.On the basis of the amplitude and frequency differences between echoes and radio-frequency interference (RFI),an improved empirical mode decomposition (EMD)algorithm was proposed. Firstly,the original signal including echo information and radio frequency interference was multiplied by a given high frequency signal and which was moved to a high frequency band.Then,the EMD was used to decompose the echo information and radio frequency interference into different intrinsic mode functions (IMF),and the values higher than the threshold would be set to zero in each IMF.Finally, all the IMFs were added to reconstruct the signal,and the reconstructed signal was shifted back to the original frequency band.Suppression of interference was achieved and the useful signal was retained to the biggest extent.In addition,the proposed method is fast which is able to meet the real-time pro-cessing requirement.Experimental data processing results suggest that the proposed method is able to overcome the shortcoming of the original EMD method,and suppress the RFI without losing of the echoes.
关 键 词:高频地波雷达 射频干扰 经验模态分解(EMD) 本征模态函数 实测数据
分 类 号:TN958.95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28