平养蛋鸭种蛋智能收集和标记系统设计与试验  被引量:8

Design and implementation of duck egg smart collection and marking system of floor rearing laying duck

在线阅读下载全文

作  者:李久熙[1,2,3] 王春山 吕继兴 史智兴[3,4] 陈辉 李国勤[6] Li Jiuxi Wang Chunshan Lu Jixing Shi Zhixing Chen Hui Li Guoqin(College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China College of Architecture and Engineering, Washington State University, Pullman 99163, USA Key Laboratory of Agricultural Engineering for Broiler and Laying Hens Breeding Facilities, Ministry of Agriculture, Baoding 071001, China College of lnformation Science and Technology, Hebei Agricultural University, Baoding 071001, China College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

机构地区:[1]河北农业大学机电工程学院,保定071001 [2]美国华盛顿州立大学建筑与工程学院,普尔曼99163 [3]农业部肉蛋鸡养殖设施农业工程重点实验室,保定071001 [4]河北农业大学信息科学与技术学院,保定071001 [5]河北农业大学动物科技学院,保定071001 [6]浙江省农业科学院畜牧兽医研究所,杭州310021

出  处:《农业工程学报》2017年第17期136-143,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家蛋鸡产业技术体系(CARS-41-K18);浙江省科技计划项目(2014C32063);河北省高等学校科学技术研究项目(QN2017339)

摘  要:目前平养蛋鸭只能采用家系选育法而不能采用个体选育法,这是因为在平养条件下很难实现蛋鸭与所产蛋的准确对应。蛋鸭家系选育法的主要缺点是复杂,劳动强度大,准确度低,严重影响选种的精度和效率。在平养环境下实现蛋鸭个体选育法的关键在于找到一种智能化无应激的精确识别和标记蛋鸭个体与其所产种蛋的方法。该文以蛋鸭为研究对象,提出了一种新型的平养蛋鸭种蛋智能收集和标记系统设计框架,给出了上位机和下位机的组网拓扑图和逻辑控制算法。该系统采用射频技术和光电传感器技术融合,实现了蛋鸭产蛋个体的准确识别,识别正确率为100%。利用非接触式喷码打印技术将蛋鸭个体编号信息记录在其所产种蛋蛋壳上,解决了蛋鸭个体与所产鸭蛋对应关系的无应激自动记录难题。设计并实现了集种蛋收集和标记于一体的新型集蛋装置。该装置由集蛋区、调整区和喷印区3部分组成。集蛋区采用梯形凹槽结构和EVA海绵弹性触面设计,消除了种蛋在加速滚落过程中积累的动能,种蛋的破损率低于1%。调整区采用滑触式种蛋姿态导向设计,种蛋姿态调整的合格率达到了99.80%,保证了蛋壳长轴截面作为喷印面,使喷印的字符最大程度保持完整性。喷印区采用连续式油墨喷码机完成蛋鸭个体与种蛋对应关系的标记,喷码标识清晰可读合格率为98.2%。该研究可为蛋鸭生产过程中个体产蛋行为分析和种蛋信息的自动收集提供参考。Floor rearing natural mating technique can fully make use of the biological characteristics and animal instincts, in order to exert the genetic advantages and improve the quality of duck eggs. At present, only the pedigree breeding method,rather than the individual breeding method, can be used for floor rearing ducks. The reason is that under the floor rearing condition laying ducks has a large area to move around, and the time of laying duck egg concentrates between 1:00-3:00 in the morning, which makes it extremely difficult to track, identify and record individual laying behaviors and to accurately correlate an individual laying duck with its own eggs manually. The shortcoming of the traditional pedigree breeding method lies in complicated process, high intensity work, low accuracy, long intergenerational interval and slow genetic progress. As the performance of laying ducks is evaluated based on the overall family characteristics, it is hard to tell the difference between high yield individuals and low yield individuals, which negatively affects the precision and efficiency of duck selection. Cage breeding is one of the ways to achieve individual breeding, but this method is subject to a limited activity space and sacrifices the animal's welfare needs. Thus, ducks under such conditions cannot properly exert their biological characteristics and instincts, and the genetic advantage is weakened. Floor rearing provides activity space for laying ducks and effective exercises can enhance their physical quality. Therefore, the realization of the individual laying duck breeding method can not only fully exert the individual instincts but also take the amount of egg production as a key indicator to the future generations. A key to apply the individual breeding method is to find an intelligent and non-stress reaction method to accurately identify and label individual ducks and their duck eggs. For the purpose to investigate laying ducks, a new design framework for an intelligent collection and labeling system was

关 键 词:自动化 识别 在线系统 产蛋跟踪 RFID 喷码标记 姿态调整 

分 类 号:S126[农业科学—农业基础科学] TN919.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象