Flow properties and inter-particle forces in fuel powders  

Flow properties and inter-particle forces in fuel powders

在线阅读下载全文

作  者:Yi Liu Haifeng Lu Massimo Poletto Xiaolei Guo Xin Gong Yong Jin 

机构地区:[1]Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, Shanghai Engineering Research Center of Coal Gasification. Institute of Clean Coal Technology. East Chino University of Science and Technology, Shanghai 200237, China [2]Dipartimento di lngegneria lndustriale. Universita degli Studi di Salerno, Via Giovanni Paolo II, 132, 1-84084 Fisciano, SA, Italy

出  处:《Particuology》2017年第5期24-38,共15页颗粒学报(英文版)

摘  要:This work studied the mechanical properties of a series of industrial fuel powders: bituminite, lignite, and petroleum coke. Sieved cuts of these powders were assessed and the flow properties of each sample were used to calculate tensile strengths as functions of consolidation stress. In addition, BET surface areas and dispersive surface energies were estimated from surface energy analysis. To analyze the bulk flow properties of these fuel powders in terms of micro-contact mechanics, the fundamentals of fuel powder adhesion and consolidation were reconsidered based on the "stiff particles with soft contacts" model proposed by Tomas. In the present work, a multi-contact concept was introduced to account for the irregular shapes of actual particles. This modified model was based on elastic-plastic contact deformation theory and was employed to describe the contact between rough particles and to estimate the associated inter-particle forces. The results were used in conjunction with the Rumpf approach to relate the isostatic tensile strength to the degree of consolidation, Applying average values for the powder compressibility parameters allowed the model to be used for predictive purposes, and an acceptable level of agreement was found between predicted and measured tensile strengths.This work studied the mechanical properties of a series of industrial fuel powders: bituminite, lignite, and petroleum coke. Sieved cuts of these powders were assessed and the flow properties of each sample were used to calculate tensile strengths as functions of consolidation stress. In addition, BET surface areas and dispersive surface energies were estimated from surface energy analysis. To analyze the bulk flow properties of these fuel powders in terms of micro-contact mechanics, the fundamentals of fuel powder adhesion and consolidation were reconsidered based on the "stiff particles with soft contacts" model proposed by Tomas. In the present work, a multi-contact concept was introduced to account for the irregular shapes of actual particles. This modified model was based on elastic-plastic contact deformation theory and was employed to describe the contact between rough particles and to estimate the associated inter-particle forces. The results were used in conjunction with the Rumpf approach to relate the isostatic tensile strength to the degree of consolidation, Applying average values for the powder compressibility parameters allowed the model to be used for predictive purposes, and an acceptable level of agreement was found between predicted and measured tensile strengths.

关 键 词:Fuel powderFlow propertyInter-particle force 

分 类 号:TQ051.13[化学工程] TK16[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象