机构地区:[1]Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology [2]Hubei San Ning Chemical Industry Joint Stock Co., Ltd
出 处:《Chinese Journal of Chemical Engineering》2017年第9期1303-1313,共11页中国化学工程学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(21306143);the Educational Commission of Hubei Province of China(D20161503);the Hubei Province Phosphorus Resource and Ethylene Project Downstream Exploitation Collaborative Innovation Center
摘 要:A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.
关 键 词:Hexafluorosilicic acid Silica Hydrothermal synthesis ZSM-5 zeolite Transalkylation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...