基于知识水平的改进智能遗传组卷算法设计  被引量:9

Improved Intelligent Genetic Generating Test Paper Algorithm Design Based on Level of Knowledge

在线阅读下载全文

作  者:杜明[1] 王树梅[1] 郝国生[1] DU Ming WANG Shu-mei HAO Guo-sheng(College of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China)

机构地区:[1]江苏师范大学计算机科学与技术学院,江苏徐州221116

出  处:《控制工程》2017年第10期2112-2117,共6页Control Engineering of China

基  金:国家自然科学基金(No.61673196);江苏师范大学实验室建设与管理研究课题(No.L2014Y10)

摘  要:针对信息化发展中在线试卷的组卷工作中存在的问题,诸如如何让考试的试题更好地检验学生的知识水平,怎样考察学生掌握和未掌握的知识等问题,探索提出了一种自适应的组卷方法,把学生个性化信息引入其中,采用期望的试卷难度、区分度作为约束条件,将从试题库选择的试题子集的难度和区分度值与期望的难度和区分度的差作为目标函数,从而提出一种个性化信息遗传组卷算法(Personalized Information Genetic Algorithm,PI-GA)。测验结果证明,在生成试卷的时候,PI-GA算法可以有效地为学生提供个性化试卷,对比几种常见的算法,执行时间最短,并且所组成的最终试卷中包含的学生未掌握试题数量具有灵活性。For the existing problems in online generating test paper work of information technology development, such as how to make the examination questions test the students' knowledge level better, how to examine students' grasp of knowledge and other issues. This paper explores an adaptive test paper generation method, introduces the customers' personalized information, uses the expected paper difficulty and discrimination as constraints, uses the difference between the difficulty and discrimination value of the question subset which is selected from the item bank and the expected difficulty and discrimination as an objective function, so a personalized information genetic algorithmic(PI-GA) is proposed. Test results show that, when generating papers, the PI-GA algorithm could provide students with personalized papers, and has a shortest execution time compared to several common algorithms, and the number of questions that are not mastered in the formed final papers is flexible.

关 键 词:知识水平 组卷 自适应 遗传算法 执行时间 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象