Advances in Chinese Arctic and subarctic research in marine biology and ecology with emphasis on the Pacific Arctic sector  被引量:2

Advances in Chinese Arctic and subarctic research in marine biology and ecology with emphasis on the Pacific Arctic sector

在线阅读下载全文

作  者:LI Hai LIN Longshan SONG Puqing LI Yuan ZHANG Ran LIN Heshan LIN Rongcheng HAO Qiang ZHANG Fang ZHANG Guangtao 

机构地区:[1]Third Institute of Oceanography State Oceanic Administration [2]Second Institute of Oceanography State Oceanic Administration [3]SOA Key Laboratory for Polar Science Polar Research Institute of China [4]Institute of Oceanology Chinese Academy of Sciences

出  处:《Advances in Polar Science》2017年第2期111-119,共9页极地科学进展(英文版)

基  金:supported by Chinese Polar Environment Comprehensive Investigation and Assessment Program (Grant nos. CHINARE2012-2016-03-05, CHINARE2012-2016-04-03, CHINARE20122016-01-05, CHINARE2012-2016-04-01);the Public Science and Technology Research Funds Projects of Ocean (Grant no. 201105022-2)

摘  要:The Arctic is one of the most sensitive regions that respond through feedback to global climate changes. Climatic, hydrological and ecological changes in the Arctic are clear evidence of global warming. In 2012 and 2014, the 5th and 6th Chinese National Arctic Research Expeditions undertook studies in the Bering Sea, the Arctic Ocean (including the Chukchi Sea), and the Norwegian Sea. These studies provided us with a better understanding of the marine biology and ecology in the Arctic and subarctic regions, particularly in the Pacific Arctic sector. Rapid changes observed in the Arctic environment include the shrinking of cold-water masses in the Bering Sea in the summer, and elevated water temperatures promoting phytoplankton blooms, leading to an increase in phytoplankton transferred to higher trophic levels. As a result, the transfer efficiency of organic matter toward the bottom weakened, leading to a reduction in benthic biomass. This is consistent with expectations that the overall carbon and energy flux will ultimately switch from the dominant mode of sea ice-algae-benthos to one of phytoplankton-zooplankton. Influenced by Pacific water inflow, fluvial runoff and melting sea ice, the Chukchi Sea exhibited different responses to various environmental changes. Interactions between water masses led to other interannual ecological shifts. With the increase in sea ice melt and sunlight in the central region of the Arctic Ocean, the relative abundance of heterotrophic bacteria is expected to increase, and play a vital role in the Arctic microbial loop.The Arctic is one of the most sensitive regions that respond through feedback to global climate changes. Climatic, hydrological and ecological changes in the Arctic are clear evidence of global warming. In 2012 and 2014, the 5th and 6th Chinese National Arctic Research Expeditions undertook studies in the Bering Sea, the Arctic Ocean (including the Chukchi Sea), and the Norwegian Sea. These studies provided us with a better understanding of the marine biology and ecology in the Arctic and subarctic regions, particularly in the Pacific Arctic sector. Rapid changes observed in the Arctic environment include the shrinking of cold-water masses in the Bering Sea in the summer, and elevated water temperatures promoting phytoplankton blooms, leading to an increase in phytoplankton transferred to higher trophic levels. As a result, the transfer efficiency of organic matter toward the bottom weakened, leading to a reduction in benthic biomass. This is consistent with expectations that the overall carbon and energy flux will ultimately switch from the dominant mode of sea ice-algae-benthos to one of phytoplankton-zooplankton. Influenced by Pacific water inflow, fluvial runoff and melting sea ice, the Chukchi Sea exhibited different responses to various environmental changes. Interactions between water masses led to other interannual ecological shifts. With the increase in sea ice melt and sunlight in the central region of the Arctic Ocean, the relative abundance of heterotrophic bacteria is expected to increase, and play a vital role in the Arctic microbial loop.

关 键 词:Arctic region climate changes chlorophyll PLANKTON BENTHOS MICROBE food chain 

分 类 号:Q178[生物学—水生生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象