检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]中国兵器工业计算机应用技术研究所,北京100089
出 处:《北京理工大学学报》2017年第9期937-941,共5页Transactions of Beijing Institute of Technology
基 金:国家部委应用项目(201720348018)
摘 要:为实现胶管表面缺陷的在线检测,提出了一种基于图像处理技术的检测方法.采用图像剪切方法选中胶管区域,利用中值滤波和Canny边缘提取处理图像,清除与图像边界连接区,避免胶管边界的干扰,使用形态学膨胀方法对缺陷区域图像分割,根据缺陷特征完成缺陷分类.采用三台CMOS相机环胶管圆周布置,间隔120°,光源采用同轴光源.基架结构具有调节功能,保证胶管在三台相机的中心位置.通过检测系统在车间生产线上试用,测试结果表明缺陷检测正确率在96%以上,可实现胶管表面缺陷自动检测和及时报警.A method based on image processing was proposed to realize an online detection of rubber hose surface defects.An image shear method was taken to select hose area.The median filter and Canny edge detection were used to extract graph.To avoid the boundary influence in separating the defects from the hose,a morphological expansion method was used for the defect area separation.According to the character of defects,the defects were classified.Three CMOS cameras within the same plane were layout around the hose axis,interval of 120°.Coaxial light source was used to improve the brightness of hose surface.The mechanical platform of the detection system could adjust the cameras in three directions to ensure the hose in the center position.This system was tested in the hose workshop of Codan-Lingyun Automotive Rubber Hose Co Ltd.The experiment results show that the correct rate of detection is over 96 percent and it can detect the hose surface defects automatically and alarm timely.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166