检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与设计》2017年第10期2740-2744,共5页Computer Engineering and Design
基 金:大连市科技计划基金项目(2014A11GX006);辽宁省自然科学基金项目(201602131);辽宁省博士启动基金项目(201601244)
摘 要:针对开敞式码头系泊作业中护舷撞击能量即时预测问题,提出一种基于大数据的分布式K近邻预测法。阐述传统K近邻算法在预测护舷撞击能量时的主要步骤;介绍MapReduce分布式框架的工作原理,给出K近邻算法在MapReduce计算框架下的实现方法,以及交叉验证确定最佳k值的步骤。对算法进行仿真实验,实验结果表明了不同k值对算法预测结果的影响,选取合适k值进行预测时,算法具有较高的准确性。通过将传统K近邻非参数回归方法与大数据Hadoop分布式集群技术相结合,实现海量数据的护舷撞击能量的有效预测,为系泊作业决策提供技术支撑和决策依据。To immediately forecast the impact energy of fender during the ship moored at open sea terminal,a distributed K-nearest neighbor forecasting method based on BigData was advanced.Four processes of K-nearest neighbor forecasting method were presented for impact energy of fender.The operating principle of MapReduce was presented.K-nearest neighbor method and MapReduce were then combined.The best k-value was found by the means of cross-validation.The proposed algorithm was tested with anolog data.The results show that k-values have different impacts on forecasting results.When using the better k-value,more accurate forecasting results are found.By the combination of the K-nearest neighbor forecasting method and the Hadoop distributed cluster,the impact energy of fender with mass data is efficiently forecasted,providing technical supports and evidences for mooring operation decision-making.
关 键 词:护舷撞击能量预测 预测方法 大数据 K近邻 分布式
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15