用于不平衡数据分类的0阶TSK型模糊系统  被引量:16

Zero-order TSK-type Fuzzy System for Imbalanced Data Classification

在线阅读下载全文

作  者:顾晓清[1,2] 蒋亦樟[1] 王士同[1] GU Xiao-Qing JIANG Yi-Zhang WANG Shi-Tong(School of Digital Media, Jiangnan University, Wuxi 214122 School of Information Science & Engineering, Changzhou University, Changzhou 213164)

机构地区:[1]江南大学数字媒体学院,无锡214122 [2]常州大学信息科学与工程学院,常州213164

出  处:《自动化学报》2017年第10期1773-1788,共16页Acta Automatica Sinica

基  金:国家自然科学基金(61502058;61572085;61572236);江苏省自然科学基金资助(BK20160187);中央高校基本科研业务费专项资金资助项目(JUSRP51614A)资助~~

摘  要:处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.When learning from imbalanced datasets, the traditional fuzzy systems have a low rate of identification over the minority class. Firstly, in the antecedent parameter learning stage, a new clustering method, called Bayesian fuzzy clustering based on competitive learning (BFCCL), is proposed to partition the input space for the antecedents of if-then rules. BFCCL considers the repulsed force of clustering prototypes between different classes, and uses an alternating iterative strategy to obtain the optimal model parameters by Markov chain Monte Carlo method. Secondly, in the consequent parameter learning stage, based on the maximum separation strategy and by keeping the distance between the minority class and the classification hyperplane larger than the distance between the majority class and the hyperplane, the method can effectively correct the skewness of the classification hyperplane. Based on the above ideas, a zero-order-Takagi-Sugeno-Kang fuzzy system for imbalanced data classification (O-TSK-IDC) is proposed. Experimental results on artificial and real-world medicine datasets illustrate the effectiveness of O-TSK-IDC on both minority and majority classes in imbalanced data classification, as well as its good robustness and interpretability.

关 键 词:不平衡数据 分类 马尔科夫蒙特卡洛 Takagi-Sugeno-Kang型模糊系统 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象