检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州311023
出 处:《计算机科学》2017年第10期216-221,227,共7页Computer Science
基 金:"十二五"国家科技支撑计划基金项目(2012BAD10B01);国家自然科学基金项目(61379123)资助
摘 要:水波优化算法(Water Wave Optimization,WWO)是一种基于浅水波理论的新兴智能优化算法。在简化水波优化算法(Simplified Water Wave Optimization,SimWWO)的基础上,提出水波优化算法的一个改进版本。针对WWO算法在寻优过程中未能有效利用水波历史状态和经验的问题,提出一种自适应的参数调整策略:根据水波进化过程中的性能改善指标自适应调整算法的波长系数,提高搜索效率;同时,针对算法后期容易陷入局部最优的情况,加入模拟退火的思想,以一定的概率接受劣质解,避免算法陷入局部最优。通过以上两个操作可以更好地平衡全局搜索和局部搜索。在CEC 2015函数测试集上进行比较,结果证明改进后的算法有效地提高了综合性能。Water wave optimization(WWO)is a novel evolutionary algorithm inspired by the shallow wave theory.In this paper,we developed a modified version of simplified water wave optimization algorithm(SimWWO).To fully utilize the history information and experience of the waves,we proposed an adaptive parameter adjustment strategy.The performance of waves on the evolutionary process is used as a feedback to adjust the wave length coefficient adaptively to improve search efficiency.Meanwhile,to avoid the problem of easily being lost in local optimum,the thought of simulated annealing is adopted to accept inferior solution with a certain probability.Through the above two operations,the algorithm achieves better balance between global search and local search.Computational experiments on the CEC 2015single-objective optimization test problems show that the modified algorithm effectively improves the overall performance.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.82.202