检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳化工大学能源与动力工程学院,辽宁沈阳110142
出 处:《沈阳化工大学学报》2017年第3期240-245,共6页Journal of Shenyang University of Chemical Technology
基 金:国家自然科学基金资助项目(51275315)
摘 要:研究两端线性弹簧支承且含有圆周非贯穿裂纹的输流管道的失稳临界流速.根据梁模型模态函数的一般表达式和裂纹处的关联式,采用传递矩阵法推导出含裂纹梁的模态函数,根据系统的特征方程具体探讨了裂纹部位、裂纹径向和周向尺寸参数对裂纹管道失稳临界流速的影响.数值仿真结果表明:由于管道裂纹的存在,系统的静态失稳和动态失稳临界流速将发生复杂的变化,管道失稳形态将随参数值的变化出现静态屈曲失稳和动态颤振失稳,并将相互转化.The critical instability flow velocity of fluid conveying pipe, whose ends were supported by linea springs and surface contained a circumferentialpat-through crack, was investigated. The modal func-tion of the cracked pipe has been obtained by using transfer matrix method on the basis o f general expres-sion of modal function and the relationship at the cracked sectionof beam. The influences of these paame- ters such as crack location, crack depth and circumferential angle o f crack on criticality were investigated on the basis of eigenequation o f the piping system. The numerical results showed that system critical instability flow velocity changed complexlydue to the existing cracks on the surface of pipeand was synthetically related with crack location, crack depth and circumferential angle osult, the instability pattern may transfer from static divergence to dynamic flutter.
关 键 词:裂纹输流管道 流固耦合 传递矩阵法 动力稳定性 临界流速
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222