小波变换与SVD结合的射频信号消噪方法  被引量:1

RF Signal Denoising by Combining Wavelet Transform and SVD

在线阅读下载全文

作  者:李俊瑶[1] 李永彬[1] 王小强[1] 张培杰 

机构地区:[1]西安卫星测控中心,陕西渭南714000

出  处:《飞行器测控学报》2017年第3期196-200,共5页Journal of Spacecraft TT&C Technology

摘  要:射频信号因具备空间远距离传输特性被广泛应用于航天测控等领域,但空间磁场、信道、设备元器件等会引入大量噪声干扰,对射频信号的传播及后续分析处理造成影响。而目前关于射频信号消噪的研究很少,针对此问题,对比研究了传统滤波器消噪、小波阈值法及SVD(Singular Value Decomposition,奇异值分解)法在射频信号消噪方面的应用,仿真分析了各算法对有用射频信号的提取效果,从而发现3种方法均能起到噪声抑制的作用,但是,滤波器法明显会降低信号能量,小波变换法易使重构信号失真,而SVD法则运算时间较长。为此,提出将小波阈值法与SVD相结合,用于射频信号消噪。再通过比对各方法消噪的性能指标,验证了将2种方法结合,可有效提高运算效率及噪声抑制能力。Radio Frequency(RF)signals are widely used in fields such as aerospace Tracking,Telemetry and Command(TTC)for its far distance transmission characteristics.However,noise and interference would be brought in through space magnetic field,channels,equipment components and so on,and they would negatively affect the spreading,analysis and processing of RF signals.There is little research about RF signal denoising at present.Traditional filter denoising method,wavelet threshold method and Singular Value Decomposition(SVD)method were studied comparatively.Simulation results and extraction effects of useful RF signals were analyzed with different methods.Finally,a method combining wavelet threshold and SVD was put forward and its effectiveness and superiority of noise suppression were verified by denoising performance metrics.

关 键 词:射频信号 噪声抑制 小波变换 奇异值分解(SVD) 

分 类 号:V557[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象