机构地区:[1]School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
出 处:《Journal of Rare Earths》2017年第10期1035-1041,共7页稀土学报(英文版)
基 金:supported by the Education Department of Shaanxi Province(14JK1351);the Principal Fund of Xi’an Technological University(0852-302021407)
摘 要:The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.
关 键 词:bulk metallic glass yttrium addition flow behavior deformation map rare earths
分 类 号:TG139.8[一般工业技术—材料科学与工程] TF777[金属学及工艺—合金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...