Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori  

Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori

在线阅读下载全文

作  者:Yuanyuan Liu Sanyuan Ma Jiasong Chang Tong Zhang Xiaogang Wang Run Shi Jianduo Zhang Wei Lu Yue Liu Qingyou Xia 

机构地区:[1]State Key Laboratory of Silkworm Genome Biology, Southwest University [2]Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University [3]DBNBiotechnology Center

出  处:《Journal of Genetics and Genomics》2017年第9期451-459,共9页遗传学报(英文版)

基  金:supported by the grants from the National Natural Science Foundation of China(No. 31530071);the Chongqing Postdoctoral Science Foundation (Xm2015024)

摘  要:The RNA-guided CRISPR/Cas9 system has been shown to be a powerful tool for genome editing in various organisms. A comprehensive toolbox for multiplex genome editing has been developed for the silkworm,Bombyx mori, a lepidopteran model insect of economic importance. However, as previous methods mainly relied on delivery of transient Cas9/guide RNA(gRNA), they could not be used in loss-of-function studies of essential genes. Here, we report a simple and versatile tissue-specific genome editing strategy.We perform a proof-of-principle demonstration by establishing and crossing two transgenic B. mori lines,one expressing Cas9 protein in the posterior silk glands(PSGs) and the other constitutively expressing BmlaminA/C(BmLMN) gRNA. All BmLMN alleles in the PSG cells were edited precisely at the target genome region, resulting in diverse mutations. mRNA expression of BmLMN was reduced by up to 75%,and only very low levels of BmLaminA/C protein were detected. Knockout of BmLMN produced obvious defects in gland cell development and cocoon production. In this study, we developed an efficient strategy for spatially controlled genome editing, providing unprecedented opportunities for investigating the function of essential/lethal genes in B. mori, with potential application for other insects.The RNA-guided CRISPR/Cas9 system has been shown to be a powerful tool for genome editing in various organisms. A comprehensive toolbox for multiplex genome editing has been developed for the silkworm,Bombyx mori, a lepidopteran model insect of economic importance. However, as previous methods mainly relied on delivery of transient Cas9/guide RNA(gRNA), they could not be used in loss-of-function studies of essential genes. Here, we report a simple and versatile tissue-specific genome editing strategy.We perform a proof-of-principle demonstration by establishing and crossing two transgenic B. mori lines,one expressing Cas9 protein in the posterior silk glands(PSGs) and the other constitutively expressing BmlaminA/C(BmLMN) gRNA. All BmLMN alleles in the PSG cells were edited precisely at the target genome region, resulting in diverse mutations. mRNA expression of BmLMN was reduced by up to 75%,and only very low levels of BmLaminA/C protein were detected. Knockout of BmLMN produced obvious defects in gland cell development and cocoon production. In this study, we developed an efficient strategy for spatially controlled genome editing, providing unprecedented opportunities for investigating the function of essential/lethal genes in B. mori, with potential application for other insects.

关 键 词:CRISPR/Cas9 system Genome editing PiggyBac transposon Posterior silk gland Endoreplication 

分 类 号:Q78[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象